Polymorphs of a crystalline azo-bicyclo (2.2.2) oct-3-yl...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C546S133000

Reexamination Certificate

active

06387925

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention is directed to certain polymorphs and forms of crystalline (2-Benzhydryl-1-azo-bicyclo[2.2.2]oct-3-yl)-(5-isopropyl-2-methoxybenzyl)-amine citrate (hereafter the citrate salt) and their pharmaceutical compositions. The citrate salt is a CNS active NK-1 receptor antagonist and this invention is directed to methods of treating conditions effected or facilitated by a decrease in substance P mediated neurotransmission. The invention is also directed to substance P antagonist which is evaluated for acute and delayed anti-emetic effacacy in a mammal including humans receiving chemotherapy. Treating is defined here as preventing and treating.
U.S. Pat. No. 5,393,762 and U.S. Ser. No. 08/816,016 both incorporated by reference, describe pharmaceutical compositions and treatment of emesis using NK-1 receptor antagonists. The crystalline anhydrous citrate salt is nonhygroscopic and exhibits a distinct X-ray powder pattern and a melt onset of 159.9° C., The anhydrous citrate was converted to the monohydrate in water.
SUMMARY OF THE INVENTION
The present invention relates to the anhydrous citrate of (2-Benzhydryl-1-azo-bicyclo[2.2.2]oct-3-yl)-(5-isopropyl-2-methoxybenzyl)-amine, the citrate monohydrate and its two polymorphs.
In one embodiment of the invention, the anhydrous citrate is a crystalline stable nonhygroscopic single form. The crystalline habits in the anhydrous citrate are microcrystalline flakes and are characterized by the x-ray powder detraction pattern below.
Peak
No.
1
2
3
4
5
6
7
8
9
D
17.61
10.95
8.78
7.96
7.37
6.80
6.57
5.87
5.46
space
In two other embodiments, the citrate monohydrate is in crystalline Forms A or B. Form A is characterized by the x-ray diffraction pattern below.
Peak
No.
1
2
3
4
5
6
7
8
9
D
17.74
10.93
9.65
8.25
6.71
5.98
5.67
5.45
4.83
space
Form A crystalline habits are birefringent needles which undergo volatilization at about 84° C., recrystallize to a lath habit and melt about 162.6° C. Form B's crystalline habits are birefringent plates, undergo volatilization at 102° C., recrystallize to less birefringent crystals characterized by melt onset of about 120° C. and recrystallize to microcrystals with melt onset of about 149° C. with degradation. Form B is characterized by the x-ray diffraction pattern below.
Peak
No.
1
2
3
4
5
6
7
8
D
12.3
11.3
6.9
5.9
4.3
4.1
3.5
3.2
space
Another aspect of the invention relates to a pharmaceutical composition having pharmaceutical activity which comprises at least one of polymorphic Forms A and B of the citrate monohydrate and the anhydrous citrate in the treatment of emesis. A method of treating emesis comprises administering to a subject in need of treatment an antiemetic effective amount of the polymorphic A or B Forms or the anhydrous citrate.
Polymorphic Form A of (2-Benzhydyl-1-azobicyclo[2.2.2]oct-3-yl)-(5-isoproyl-2-methoxybenzyl-amine citrate monohydrate comprises dissolving the anhydrous citrate in isopropyl alcohol and water and stirring the mixture overnight at room temperature. The citrate monohydrate salt is crystallized and Form A is collected by filtration. Form A is then dried at about 20 to 80° C. under vacuum. The synthesis is carried out for about 1.5 to 72 hours under ambient conditions. Large crystals of Form A with a plate like habit are grown from an ether/water solution and are grown with a needle like habit in acetone/diisopropyl ether/water. A method of making polymorphic Form B of the citrate monohydrate comprises concentrating a solution of the citrate monohydrate in methanol at room temperature for about 48 to 72 hours.
DETAILED DESCRIPTION OF THE INVENTION
Anhydrous citrate synthesis was carried out by adding 1.1 equivalents citric acid to a stirred slurry of the free base in isopropanol (15 volumes) at room temperature. The resulting solution was stirred and monitored by differential scanning calorimetry and after all the free base had reacted (18 hours), the anhydrous citrate salt was obtained as a white crystalline solid by filtration and drying under house vacuum at 45° C. with nitrogen purge (83% yield). X-ray powder diffraction and PLM revealed the salt to be crystalline. The crystalline habits frequently encountered are microcrystalline flakes. The most intense reflections, d spacings, observed by X-ray powder diffraction were 17.608, 10.953, 8.782, 7.956, 7.371, 6.802, 6.571, 5.866, 5.462, 4.907, 4.415, 4.188, 3.635 and 3.512Å. The crystals exhibited a melt onset at 159.8° C. with decomposition. Hygroscopicity measurements demonstrated that 1.11% wt./wt. water was absorbed at 90% RH.
A method of making crystalline citrate monohydrate, polymorphic Form A comprises the addition of a solution of 13.9 kg of citric acid (anhydrous, 99.5+%) in acetone (125 L) to a solution of 50 kg free base in isopropyl alcohol (250 L). The clear solution was filtered, stirred and the acetone removed by distillation. The resulting mixture was stirred at ambient temperature until crystallization started and then granulated for an additional 16 hours. The white crystalline anhydrous citrate which formed was collected by filtration and dried at 25° C. under vacuum (80% yield).
Anhydrous citrate, (26.4 kg) was dissolved in isopropyl alcohol (264 L), water (13.2 L) was added and the mixture stirred overnight at room temperature. The citrate monohydrate salt crystallized and was collected by filtration and dried at 25° C. under vacuum 24.9 kg product, (91.8% yield) was obtained.
The resulting citrate monohydrate salt, Form A, was compared to an authentic sample and characterized via PLM, X-ray powder diffraction, proton NMR, Karl Fisher, DSC and elemental analysis. X-ray powder diffraction and PLM revealed it to be crystalline. The two crystalline habits having similar refractograms encountered were plates and needles. The needle habit was as a result of different rate of growth of the crystal faces in water whereas in isopropanol/water more even growth of crystal faces produced plates. The most intense reflections, d spacings, observed by X-ray powder diffraction were 17.730, 10.928, 9.651, 8.253, 6.707, 5.981, 5.666, 5.450, 4.833, 4.488, and 3.646Å. The crystals exhibited a volatilization at 84° C. and a melt onset at 159.9° C. with decomposition. Hygroscopicity measurements demonstrated that 2.44% wt./wt. water was absorbed at 90% RH. Karl Fisher analysis showed the presence of 2.7% water (2.66% theoretical) verifying that the monohydrate was synthesized. Elemental analysis validated the purity of the salt synthesized.
Preparation of Form B citrate monohydrate salt was accomplished by slurrying in methanol under ambient conditions for about 1.5 to 72 hours. The product was collected by filtration. Refluxing of the citrate monohydrate salt for 18 hours gives the same results.
Form B is polymorph of the citrate monohydrate. On isolation, Form B's distinct crystalline forms are birefringent plates. Form B can be converted to form A in ethyl acetate at room temperature. Form B, by differential scanning calorimetry, undergoes loss of water at 76° C., slight recrystallization at 120° C., melt onset at 138.8° C., recrystallization and final melt onset at 159.9° C.
Dissolving Form A in methanol returned Form B which readily dried to a fairly stable polymorph. Bridging the polymorphs in ethyl acetate yielded Form A Bridging is a common term used in Chemical Microscopy and Crystallography for solution phase transformations, an experimental method often used to determine the lowest energy (most stable) crystalline form. Usually the crystalline forms are charged together in a variety of previously saturated solvents (saturated with the compound which provided the crystalline forms). After being slurred for a suitable period of time, the crystals are collected and examined to determine which crystalline form has prevailed. That crystalline form will be the lowest energy form under the experimental conditions.
Bridging of Form A with Form B yielded Form A from ethyl acetate and acetone and returned the original mi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymorphs of a crystalline azo-bicyclo (2.2.2) oct-3-yl... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymorphs of a crystalline azo-bicyclo (2.2.2) oct-3-yl..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymorphs of a crystalline azo-bicyclo (2.2.2) oct-3-yl... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2913221

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.