Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...
Reexamination Certificate
2006-03-28
2006-03-28
Lipman, Bernard (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Mixing of two or more solid polymers; mixing of solid...
C525S301000, C525S319000, C525S322000, C525S324000, C526S135000, C526S145000
Reexamination Certificate
active
07019082
ABSTRACT:
Embodiments of the present invention include a material comprising a polymer having a modulus of elasticity less than 105Pa and a material comprising a polymer having a modulus of elasticity of less than 5×104Pa. Embodiments also include a material comprising a polymeric network and a multiplicity of side chains attached to the polymeric network. The multiplicity of side chains may have an average molecular weight below the critical molecular weight for entanglements. In certain embodiments it may be advantageous for the side branches to have a glass transition temperature below the use temperature of the material. The polymer network may comprise at least two monomers so that the polymer network is a copolymer. Embodiments of the present invention also include methods of forming a polymer network. Such as, for example, a method of preparing a polymer network comprising cross-linking a polymer, wherein the polymer comprises a multiplicity of side chains. The polymer may be at least one of a polymer brush, a polymer comb, and a nanocomposite material. An additional embodiment may include polymerizing macromonomers in the presence of a crosslinking agent. This embodiment may result in the forming a polymer network, wherein the polymer network comprises a multiplicity of branches attached to the polymer network, wherein the macromonomers may have a molecular weight less than the critical molecular weight for entanglements. Another embodiment of the method of forming a polymer network may comprising polymerizing monomers directly from a crosslinked polymer network. This method may result in forming a branched polymer network, wherein the polymer network comprises a multiplicity of branches attached to the polymer network.
REFERENCES:
patent: 3183217 (1965-05-01), Serniuk et al.
patent: 3959225 (1976-05-01), Kuntz
patent: 4007165 (1977-02-01), MacLeay et al.
patent: 4374751 (1983-02-01), Dudgeon
patent: 4552944 (1985-11-01), Kamiyama et al.
patent: 4728706 (1988-03-01), Farnham et al.
patent: 4940648 (1990-07-01), Geiger
patent: 4954416 (1990-09-01), Wright et al.
patent: 5089135 (1992-02-01), Yoneyama et al.
patent: 5169914 (1992-12-01), Kaszas et al.
patent: 5210109 (1993-05-01), Tateosian et al.
patent: 5294678 (1994-03-01), Tse et al.
patent: 5312871 (1994-05-01), Mardare et al.
patent: 5331088 (1994-07-01), Meister et al.
patent: 5405913 (1995-04-01), Harwood et al.
patent: 5451647 (1995-09-01), Faust et al.
patent: 5470928 (1995-11-01), Harwood et al.
patent: 5508353 (1996-04-01), Liu et al.
patent: 5510307 (1996-04-01), Narayanan et al.
patent: 5656708 (1997-08-01), Meister
patent: 5763548 (1998-06-01), Matyjaszewski et al.
patent: 5789487 (1998-08-01), Matyjaszewski et al.
patent: 5807937 (1998-09-01), Matyjaszewski et al.
patent: 5833320 (1998-11-01), Ishihara et al.
patent: 5910549 (1999-06-01), Matyjaszewski et al.
patent: 5945491 (1999-08-01), Matyjaszewski et al.
patent: 5998537 (1999-12-01), Good et al.
patent: 6031017 (2000-02-01), Miyanoto et al.
patent: 6111022 (2000-08-01), Matyjaszewski et al.
patent: 6121371 (2000-09-01), Matyjaszewski et al.
patent: 6124411 (2000-09-01), Matyjaszewski et al.
patent: 6162882 (2000-12-01), Matyjaszewski et al.
patent: 6191197 (2001-02-01), Toyosawa et al.
patent: 6288186 (2001-09-01), Matyjaszewski et al.
patent: 6407187 (2002-06-01), Matyjaszewski et al.
patent: 6512060 (2003-01-01), Matyjaszewski et al.
patent: 6538091 (2003-03-01), Matyjaszewski et al.
patent: 6624262 (2003-09-01), Matyjaszewski et al.
patent: 6624263 (2003-09-01), Matyjaszewski et al.
patent: 6627314 (2003-09-01), Matyjaszewski et al.
patent: 2002/0026005 (2002-02-01), Munro
patent: 2003/0065389 (2003-04-01), Petersen
patent: 0341012 (1989-11-01), None
patent: 0530140 (1993-03-01), None
patent: 0870809 (1998-10-01), None
patent: 0879831 (1998-11-01), None
patent: 0879832 (1998-11-01), None
patent: WO 88 00603 (1988-01-01), None
patent: WO 97/20852 (1997-06-01), None
patent: WO 98/01480 (1998-01-01), None
patent: WO 00/56795 (2000-09-01), None
patent: WO 01/71277 (2001-09-01), None
patent: WO 01/77197 (2001-10-01), None
patent: WO 02/28912 (2002-04-01), None
U.S. Appl. No. 10/269,556 filed Oct. 11, 2002.
U.S. Appl. No. 09/359,359 filed Jul. 23, 1999.
U.S. Appl. No. 09/534,827 filed Mar. 23, 2000.
U.S. Appl. No. 09/972,056 filed Oct. 5, 2001.
U.S. Appl. No. 10/034,908 filed Dec. 21, 2001.
U.S. Appl. No. 10/118,519 filed Apr. 6, 2002.
U.S. Appl. No. 10/271,025 filed Oct. 15, 2002.
U.S. Appl. No. 10/289,545 filed Nov. 7, 2002.
Carter et al., “Polyimide Nanofoams From Phase-Separated Block Copolymers”, Electrochemical Society Proceedings, 1997, pp. 32-43, vol. 97, No. 8, Electrochemical Society, Pennington, NJ, US,.
Chen et al., “Pryolytic Behavior and In-Situ Paramagnetism of Star-like C60(CH3)x(PAN)xcopolymers”, European Polymer Journal, Mar. 1, 1998, pp. 421-429, vol. 34, No. 3-4, Elsevier Science Ltd., Oxford, GB.
Dorota Greszta et al., “Gradient Copolymers of Styrene and Acrylonitrille Via Atom Transfer Radical Polymerization”, Polymer Preprints, Apr. 1997, pp. 709-710, vol. 38(1).
Gromada, J.; Matyjaszewski, K. Macromolecules 2001, 34, 7664-7671.
Jin-Shan Wang and Krzysztof Matyjaszewski, “Controlled/“Living” Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes”. Reprinted form the Journal of the American Chemical Society, 1995, vol. 117, No. 20.
Jin-Shan Wang and Krzysztof Matyiaszewski, “Controlled/“Living” Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process”. Reprinted from Macromolecules, 1995, 28. Department of Chemistry, Carnegie Mellon University. Received May 2, 1995; Revised Manuscript Received Aug. 14, 1995.
Krzysztof Matyjaszewski, Mingli Wei, Jianhui Xia and Nancy E. McDermott, “Controlled/“Living” Radical Polymerization of Styrene and Methyl Methacrylate Catalyzed by Iron Complexes 1”, Macromolecules, vol. 30, No. 26, 1997.
Krzysztof Matyjaszewski, Simion Coca, Scott G. Gaynor, Mingli Wei and Brian E. Woodworth, “Zerovalent Metals in Controlled/“Living” Radical Polymerization”, Macromolecules, 1997, pp. 7348-7350, vol. 30, No. 23.
Matyjaszewski, K.; Editor Controlled/Living Radical Polymerization. Progress In ATRP, NMP, and RAFT. In: ACS Symp. Ser., 2000; 768, 2000., Chapter 19 “Reverse Atom Transfer Radical Polymerization Using AIBN or BPO as Initiator” pp. 263-275.
Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921-2990.
Mingli Wei, Jianhui Xia, Nancy E. McDermott and Krzysztof Matyjaszewski, “Atom Transfer Radical Polymerization of Styrene in the Presence of Iron Complexes”, Polymer Preprints, 38(2), 231 (1997), Department of Chemistry, Carnegie Mellon University.
Qiu, J.; Matyjaszewski, K; Thouin, L.; Amatore, C. Macromol. Chem. Phys. 2000, 201, 1625-1631.
Queffelec, J.; Gaynor, S.G.; Matyjaszewski, K. Macromolecules 2000, 33, 8629-8639.
Simion Coca, Christina B. Jasieczek, Kathryn L. Beers and Krzysztof Matyjaszewski, “Polymerization of Acrylates by Atom Transfer Radical Polymerization. Homopolymerization of 2-Hydroxyethyl Acrylate”, Journal of Polymer Science, 1998, pp. 1417-1424, vol. 36, Part A: Polymer Chemistry.
Seong Mu Jo et al., “Polyacrylonitrile with Low Polydispersities by Atom Transfer Radical Polymerization”, Polymer Preprints, vol. 38(1) Apr. 1997, pp. 697-698.
Seong Mu Jo et al, “Effects of Various Copper Salts and Additives on Polymerization of Acrylonitrile by Atom Transfer Radical Polymerization”, Polymer Preprints, vol. 38(1) Apr. 1997, pp. 699-700.
Takeichi et al., “Preparation of Porous Carbon Films by the Pyrolysis of Poly(Urethane-imide) Films and Their Pore Characteristics”, Carbon, Feb. 2001, pp. 257-265, vol. 39, No. 2.
Timothy E. Patten and Krzysztof Matyjaszewski, Atom Transfer Radical Polymerization and the Synthesis of Polymeric Materials, Advanced Materials
Matyjaszewski Krzysztof
Pakula Tadeusz
Carnegie Mellon University
Kirkpatrick & Lockhart Nicholson & Graham LLP
LandOfFree
Polymers, supersoft elastomers and methods for preparing the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polymers, supersoft elastomers and methods for preparing the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymers, supersoft elastomers and methods for preparing the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3602083