Polymerizing alkyl acrylate(s) in presence of aromatic...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S107000, C525S122000, C525S131000, C525S143000, C525S163000, C525S170000, C525S176000, C525S183000, C525S217000, C525S219000, C525S228000, C526S230500, C526S231000, C526S232000, C526S307700, C526S328000, C526S329000, C526S329100, C526S329200

Reexamination Certificate

active

06812302

ABSTRACT:

BACKGROUND
The present invention relates to new toughened thermoset compositions. The present invention also relates to new compositions for toughening thermoset compositions. The present invention also relates to processes for preparing new tougheners for thermoset compositions. The present invention also relates to composite materials and articles which contain the new toughened thermoset compositions.
Many advanced composite materials are used in high-performance structural materials which have high heat resistance. These materials find wide use in the construction, electronic, automotive, computer, aerospace, and electrical industries. Many of these advanced composite materials are based on the thermal curing (“thermosetting”) of liquid resin formulations. These liquid resin formulations often contain various components for forming rigid highly crosslinked polymeric matrices.
Unfortunately, it is well known that rigid highly crosslinked polymeric matrices are brittle and have poor impact strength. Various toughening agents have been developed over the years for toughening thermoset materials. Functional toughening agents have been incorporated in thermoset materials as small rubbery particles. Presently, small rubbery particles are incorporated in thermosets either by premixing rubber particles (e.g., core-shell polymer particles) into the thermoset liquid resin prior to curing, or by formation of rubbery microdomains upon curing of the thermoset liquid formulation.
One of the most important type of toughening agents that is widely used in thermosetting structural materials is the class of Liquid Rubbers (“LR”). LRs that are commonly used for toughening thermoset resins have low viscosities and tend to be miscible in the uncured liquid resin formulations. The LRs typically phase separate upon curing (crosslinking) of the thermoset resins to form rubbery microdomains in the crosslinked polymeric matrix of the thermosetting resin. These rubbery microdomains help to toughen the rigid crosslinked polymeric matrix while maintaining heat resistance and dimensional stability of the matrix. Various types of LRs are disclosed in
Mulhaupt, R., “Flexibility or Toughness?—The Design of Thermoset Toughening Agents”, Chimia
44 (1990), pp. 43-52.
An important design parameter of a LR for toughening thermoset resins is its molecular weight. While phase separation and toughness typically improve with increasing molecular weight of the LR, compatibility between the LR and the uncured liquid thermoset resins typically improves with decreasing molecular weight. Ideally, the LR is miscible (i.e. forms a single phase) in the uncured liquid thermoset resin because single phase liquid thermoset resin formulations have lower viscosities than multi-phase liquid thermoset resin formulations. Because multi-phase liquids tend to exhibit complex Theological behavior compared to single-phase liquids, miscible thermosetting resin formulations tend to have better processing characteristics than immiscible, multi-phase, liquid thermoset resin formulations.
Most, if not all, known LRs for toughening thermoset resins contain functional groups. It is generally believed that these functional groups are required to enhance the interfacial adhesion of the phase separated rubbery domain to the crosslinked polymeric matrix. Often this interfacial adhesion is enhanced by covalent chemical bonding between the functional groups of the LRs and the functional groups of the crosslinkable polymer resin. Often the functional groups of the LRs are located at the ends of polymer chains, denoted “terminally functional” or “functionally terminated” LRs.
Commercially-available functionally terminated LRs include carboxy-terminated copolymers of butadiene and acrylonitrile monomers, known as “CTBN” resins, and amino-terminated copolymers of butadiene and acrylonitrile monomers, known as “ATBN” resins. Similar copolymers end-functionalized with vinyl groups and epoxy groups are also known as “VTBN” and “ETBN”, respectively. It is known that the carboxylic acid and amine functional groups of these LRs enhance their miscibility in uncured epoxy resins. In addition, their terminal functional groups tend to increase the molecular weight of the polymer chains in the rubbery microdomains during curing, which also tends to improve impact strength.
Of the two common thermosetting resins, epoxy and unsaturated polyester, the epoxy resins have proved to be amenable to toughening by low levels of either liquid carboxyl-terminated butadiene acrylonitrile copolymer (CTBN) or amino-terminated butadiene acrylonitrile copolymer (ATBN). These liquid rubbers are effective in improving the crack resistance and impact strength while minimally effecting the heat distortion properties of the normally brittle epoxy resins. The enhancement in crack resistance and impact strength is brought about by the formation of a discrete rubbery phase during the curing of the epoxy resin. The size of the particles that constitute this phase is usually between 0.1 and 5 &mgr;m.
Unfortunately, there are several problems associated with terminally-functional LRs. One problem is that end-functionalized polymer chains of liquid rubbers tend to react and crosslink, thereby increasing molecular weight, viscosity, and reducing miscibility. This problem is particularly severe among polymers that have reactive functional groups at each end of the polymer chain. Another problem is that the presence of terminal functional groups cause the LR to react prematurely with the liquid thermoset resins prior to cure. This also causes viscosity increases and/or reduced miscibility (phase separation) of the LR/thermoset resin liquid blend which makes processing difficult. Similar problems with increased viscosity also result from strong interactions between end-functionalized polymer chains and reactive groups on the thermosetting resins.
Another problem is that while CTBN and ATBN LRs are available for preparing miscible LR-modified epoxy liquid thermoset resins, no such LR is presently known that is both miscible in the uncured state and immiscible in the cured state with unsaturated polyester (“UP”) and epoxy vinyl ester thermoset resins. Unlike the epoxy resins, the incorporation of low levels of CTBN and/or ATBN LRs into unsaturated polyester resins results in negligible improvement in crack resistance and impact strength at the expense of reducing the heat distortion characteristics of the cured resin matrix.
The aforementioned problems thereby preclude the use of such blends, especially those based on unsaturated polyester thermoset resins, in processing operations that require low viscosities, such as pultrusion, resin transfer molding, and spray-up.
Moreover, when preparing LR/thermoset liquid resin blends, the end-user must carefully measure and mix these individual components. This hinders the preparation of “one-pack” LR/thermoset liquid resin blends.
In view of the above problems, the composites and thermoset resin industry would greatly welcome the preparation of LRs and LR/thermoset liquid resin blends that: (a) remain miscible in the uncured state over time; (b) provide low viscosity and easy processability; (c) are chemically stable; and (d) toughen the cured thermoset resin with minimal decrease in heat and dimensional stability. The composites and thermoset resin industry would especially welcome the development of a LR that overcomes these problems in unsaturated polyester thermoset resins.
Accordingly, one object of the present invention is to provide LRs that: (a) remain miscible in uncured thermosetting liquid resins over long periods of time; (b) provide low viscosity and easily processable liquid resin thermoset blends; (c) are chemically stable; and (d) phase separate during cure for toughening the cured thermoset resin, which overcome the aforementioned problems.
Another object of the present invention is to provide efficient processes for preparing LRs that overcome the aforementioned problems.
Another object of the present invention is to provide u

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymerizing alkyl acrylate(s) in presence of aromatic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymerizing alkyl acrylate(s) in presence of aromatic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymerizing alkyl acrylate(s) in presence of aromatic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3292894

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.