Polymerization process using a dual shear mixing element

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymerizing in tubular or loop reactor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S065000, C526S088000, C526S348200, C366S279000, C366S319000

Reexamination Certificate

active

06319996

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a dual shear mixing element. The mixing element may be used in chemical reactors where liquids of different temperatures need to be thoroughly mixed in a short period of time and solute must stay substantially in solution. The present invention is particularly useful in the solution polymerization of polyolefins.
BACKGROUND OF THE INVENTION
There are a number of chemical reaction processes in which a relatively cooler stream of liquid is introduced into a relatively warmer solution. One of the concerns relating to such processes is the precipitation of solute from the warmer solution. One way to minimize this problem is to provide for rapid mixing of the solutions typically using some type of high intensity shear device such as a paddle or agitator stirrer. Generally, as the concentration of solute increases the solution often becomes more viscous and/or non-Newtonian and the rapid mixing of the relatively cooler solution and warm solution becomes more difficult. The problem is accentuated if the residence time in the reactor is relatively short. Further difficulties arise if the solute is difficult to re-dissolve in the solvent. This may lead to the formation of precipitate within the reactor which may ultimately affect the product. This problem is particularly acute where the process is constrained by heat or enthalpy transfer considerations.
All of the above issues are particularly relevant to bulk, mass, and solution polymerizations (as opposed to emulsion and suspension in which the diluent is usually water and heat of reaction is not a significant problem) in which there is a need to manage the heat of polymerization from a reactor. For some polymerizations this has led to the use of “chains” of reactors with the reactants being heated to successively higher temperatures and successively higher conversion in different reactors. In general, if the residence time in a reactor is relatively long (e.g. in the order of hours) and where the mixing time is relatively short (e.g. in the order of tens of minutes) there may not be too significant a problem.
In the continuous solution polymerization of olefins there are several problems. The residence time in the reactor is typically short and the lifetime of the catalyst at higher temperatures is also relatively short. Accordingly it is necessary to thoroughly, and quickly, mix the bulk reactor contents with the catalyst and reactor feed streams. After the catalyst is heated to the operating temperature of the reactor it has a short half life. The situation becomes worse where the viscosity of the solution rises (most notably when a high concentration of polymer is employed or when cooler conditions are used to make higher molecular weight polymer).
There have been several approaches to this problem. One approach has been to use tubular reactors. The high surface area of tube or loop reactors assist in the removal of heat of reaction. In order to avoid problems of precipitation, the reactor feed streams should be at temperatures above the precipitation temperature of the polymer from the solvent. However higher reactor temperature may also lead to the undesirable formation of low molecular weight polymer. Thus there are usually temperature limitations which restrict the operating flexibility of a tube or loop reactor.
U.S. Pat. No. 4,282,339 issued Aug. 4, 1981, assigned to National Distillers and Chemical Corp., teaches a process for the high pressure polymerization of alpha olefins in which dual autoclaves are used in tandem. The first reactor is a relatively higher pressure reactor (e.g. 30,000 psi). The product from the first reactor is cooled while still under high pressure and then introduced into a second reactor at a relatively lower pressure (e.g. 22,000 psi) and the polymerization is finished. The reference does not teach medium pressure polymerizations or suggest the type of mixing element of the present invention.
U.S. Pat. No. 4,496,698, issued Jan. 29, 1985, assigned to The Dow Chemical Company, takes a similar approach to the high pressure polymerization of ethylene in which the first reactor is operated at pressures of greater than 50,000 kilo Pascals (“kPa”) (about 7,500 psi) and then the polymer melt is cooled and fed through a cooling heat exchanger to a second reactor which may be a tube or loop reactor. The reference does not teach medium pressure polymerization or suggest the type of mixing element of the present invention.
The paper
Circulation Time Prediction in the Scale
-
up of Polymerization Reactors with Helical ribbon Agitators
by D. F. Ryan, L. P. B. M. Janssen, and L. L. van Dierendonck, Chemical Engineering Science, Vol. 43, No. 8, pp. 1961-1966, 1988 illustrates a chemical reactor (which may be used for polymerization) having a helical ribbon agitator but does not suggest a mixing element in accordance with the present invention.
The present invention seeks to provide a mixing element useful for rapid mixing of relatively cooler and warmer solutions, preferably in which the solvent is a hydrocarbon, to reduce the potential of solute precipitation.
SUMMARY OF THE INVENTION
The present invention provides a mixing element for a chemical reactor comprising in cooperating arrangement:
a. a tube which defines an open interior space, said tube having a cylindrical top section, a flared bottom section, and a fixed stator between said top section and said bottom section, wherein said fixed stator partially constricts said open interior space in the area between said cylindrical top section and said flared bottom section;
b. a combined auger and impeller comprising:
b1. a central shaft rotatable within said tube;
b2. at least one auger flight integrally attached to said central shaft so as to describe a helix about said central shaft, wherein said auger flight is located within, and rotatable within, said open space of said cylindrical top section of said tube; and
b3. a series of impeller blades attached to said shaft below said fixer stator and said at least one auger flight at a distance sufficient to permit clearance between said fixed stator and said at least one auger flight, wherein said impeller blades are located within, and rotatable within, said open space within said flared bottom section of said tube, with the proviso that the rotation diameter of said impeller blades is greater than the rotation diameter of said at least one auger flight.
The present invention further provides a reactor comprising a closed cylindrical vessel having one or more inlets, one or more outlets, a ratio of height to diameter from 1.5:1 to 5:1 and internally a mixing element as described above, preferably having a height from 0.75 to 0.90 the internal height of the reactor, at least one of said one or more inlets being located in the bottom of said closed cylindrical vessel and the flared portion of said mixing element being proximate said at least one inlet.
The present invention further provides a process for mixing a cooler liquid having a temperature from 20 to 200° C. into a hotter and more viscous solution having a temperature from 110 to 300° C. said cooler liquid having a temperature of at least 20° C. cooler than said solution, comprising introducing said relatively cooler liquid into the above reactor, through said inlet proximate to said flared portion of said tube and rotating the central shaft of said mixing element at a speed sufficient to provide turbulent mixing within the flared bottom section of the tube.
In a preferred embodiment of the present invention the relatively warmer solution comprises a solution of ethylene, polyethylene and a solvent (preferably organic solvent), and the relatively cooler solution comprises catalyst, activator, solvent and monomer(s).


REFERENCES:
patent: 4914168 (1990-04-01), Coosemans et al.
patent: 5120805 (1992-06-01), Woodson et al.
patent: 5767208 (1998-06-01), Turner et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymerization process using a dual shear mixing element does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymerization process using a dual shear mixing element, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymerization process using a dual shear mixing element will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2598095

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.