Polymerization catalysts

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S113000, C526S348000, C502S152000, C502S113000, C502S123000, C502S132000

Reexamination Certificate

active

06657026

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to novel transition metal compounds and to their use as polymerisation catalysts.
The use of certain transition metal compounds to polymerise 1-olefins, for example, ethylene, is well established in the prior art. The use of Ziegler-Natta catalysts, for example, those catalysts produced by activating titanium halides with organometallic compounds such as triethylaluminium, is fundamental to many commercial processes for manufacturing polyolefins. Over the last twenty or thirty years, advances in the technology have led to the development of Ziegler-Natta catalysts which have such high activities that that olefin polymers and copolymers containing very low concentrations of residual catalyst can be produced directly in commercial polymerisation processes. The quantities of residual catalyst remaining in the produced polymer are so small as to render unnecessary their separation and removal for most commercial applications. Such processes can be operated by polymerising the monomers in the gas phase, or in solution or in suspension in a liquid hydrocarbon diluent. Polymerisation of the monomers can be carried out in the gas phase (the “gas phase process”), for example by fluidising under polymerisation conditions a bed comprising the target polyolefin powder and particles of the desired catalyst using a fluidising gas stream comprising the gaseous monomer. In the so-called “solution process” the (co)polymerisation is conducted by introducing the monomer into a solution or suspension of the catalyst in a liquid hydrocarbon diluent under conditions of temperature and pressure such that the produced polyolefin forms as a solution in the hydrocarbon diluent. In the “slurry process” the temperature, pressure and choice of diluent are such that the produced polymer forms as a suspension in the liquid hydrocarbon diluent. These processes are generally operated at relatively low pressures (for example 10-50 bar) and low temperature (for example 50 to 150° C.).
Commodity polyethylenes are commercially produced in a variety of different types and grades. Homopolymerisation of ethylene with transition metal based catalysts leads to the production of so-called “high density” grades of polyethylene. These polymers have relatively high stiffness and are useful for making articles where inherent rigidity is required. Copolymerisation of ethylene with higher 1-olefins (e.g. butene, hexene or octene) is employed commercially to provide a wide variety of copolymers differing in dengsity and in other important physical properties. Particularly important copolymers made by copolymerising ethylene with higher 1-olefins using transition metal based catalysts are the copolymers having a density in the range of 0.91 to 0.93. These copolymers which are generally referred to in the art as “linear low density polyethylene” are in many respects similar to the so called “low density” polyethylene produced by the high pressure free radical catalysed polymerisation of ethylene. Such polymers and copolymers are used extensively in the manufacture of flexible blown film.
An important feature of the microstructure of the copolymers of ethylene and higher 1-olefins is the manner in which polymerised comonomer units are distributed along the “backbone” chain of polymerised ethylene units. The conventional Ziegler-Natta catalysts have tended to produce copolymers wherein the polymerised comonomer units are clumped together along the chain. To achieve especially desirable film properties from such copolymers the comonomer units in each copolymer molecule are preferably not clumped together, but are well spaced along the length of each linear polyethylene chain. In recent years the use of certain metahocene catalysts (for example biscyclopentadienylzirconiumdichloride activated with alumoxane) has provided catalysts with potentially high activity and capable of providing an improved distribution of the comonomer units. However, metallocene catalysts of this type suffer from a number of disadvantages, for example, high sensitivity to impurities when used with commercially available monomers, diluents and process gas streams, the need to use large quantities of expensive alumoxanes to achieve high activity, and difficulties in putting the catalyst on to a suitable support.
WO98/27124, published after the earliest priority date of this invention, discloses that ethylene may be polymerised by contacting it with certain iron or cobalt complexes of selected 2,6-pyridinecarboxaldehydebis(imines) and 2,6-diacylpyridinebis(imines); and our own copending application GB 9718775.1 has disclosed polymerisation catalysts containing novel nitrogen-containing transition metal compounds which comprise the skeletal unit depicted in Formula B:
wherein M is Fe[II], Fe[III], Co[I], Co[II], Co[III], Mn[I], Mn[II], Mn[III], Mn[IV], Ru[II], Ru[III] or Ru[IV]; X represents an atom or group covalently or ionically bonded to the transition metal M; T is the oxidation state of the transition metal M and b is the valency of the atom or group X; R
1
, R
2
, R
3
, R
4
, R
5
, R
6
and R
7
are independently selected from hydrogen, halogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl; and when any two or more of R
1
-R
7
are hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl, said two or more can be linked to form one or more cyclic substituents.
An object of the present invention is to provide a novel catalyst system suitable for polymerising monomers, for example, olefins, and especially for polymerising ethylene alone or for copolymerising ethylene with higher 1-olefins. A further object of the invention is to provide an improved process for the polymerisation of olefins, especially of ethylene alone or the copolymerisation of ethylene with higher 1-olefins to provide homopolymers and copolymers having controllable molecular weights.
SUMMARY OF THE INVENTION
We have unexpectedly discovered that the combination of catalysts of the Formula B with other catalysts can produce a highly active catalytic system in which the resultant polymers exhibit improved performance and processing properties.
The present invention provides a polymerisation catalyst comprising (1) a compound of the Formula B:
wherein M is Fe[II], Fe[III], Co[I], Co[II], Co[III], Mn[I], Mn[II], Mn[III], Mn[IV], Ru[II], Ru[III] or Ru[IV]; X represents an atom or group covalently or ionically bonded to the transition metal M; T is the oxidation state of the transition metal M and b is the valency of the atom or group X; R
1
, R
2
, R
3
, R
4
, R
5
, R
6
and R
7
are independently selected from hydrogen, halogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl; and when any two or more of R
1
-R
7
are hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl, said two or more can be linked to form one or more cyclic substituents; and (2) a further catalyst.


REFERENCES:
patent: 5955555 (1999-09-01), Bennett
patent: 10-007712 (1998-01-01), None
patent: WO 97/48735 (1997-12-01), None
patent: WO 98/44011 (1998-10-01), None
S. Mecking. “Reactor Blending with Early/Late Transition Metal Catalyst Combinations in Ethylene Polymerization”, Macromol. Rapid Commun., vol. 20, No. 3, pp. 139-143, (1999).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymerization catalysts does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymerization catalysts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymerization catalysts will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3100179

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.