Polymerisation of glycerol using a zeolite catalyst

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From aluminum- or heavy metal-containing reactant

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

568853, 549453, 549513, C08G 6510, C08G 6534, C08G 6516

Patent

active

056355882

DESCRIPTION:

BRIEF SUMMARY
This application is a 371 of PCT/EP94/00318 filed Feb. 3, 1994.
The present invention relates to a process of preparing polymers of glycerol in which glycerol or its derivatives glycidol or ispropylidene glycerol (or 2,2-dimethyl-1,3-dioxolane-4-methanol) are polymerized in the presence of a zeolite.
Such a process is known from Japanese Patent Application JP-A-61/238,749 (Nippon Oils and Fats Co. Ltd.) in which a process has been described of manufacturing polyglycerol, in which glycerol is condensed after addition of 0.1-5 wt % of alkali catalyst and the same amount of an aluminium oxide adsorbent. Examples of the adsorbent of the aluminium oxide type are activated alumina and adsorbents containing at least 5 wt % of alumina, such as activated clays, synthetic adsorbents and zeolites.
The aluminium oxide adsorbent provides a decolourizing effect during the reaction and also exhibits a catalytic effect in that it particularly prevents the formation of cyclic polymers of glycerol. In an example 100 parts of glycerol are condensed for 5 hours at 250.degree. C. in an inert gas atmosphere in the presence of 1 wt % of sodium hydroxide and 1 wt % of zeolite (manufactured by Mizusawa Kagaku, but no further particulars have been given). The product obtained has a disadvantageous colour, contains a large amount of non-polymerized glycerol and has a total content of only 10.5 wt % of cyclic polymers. The analytical data given do not appear to be very reliable, however, because in some of the examples the total amount of components is well over 100%.
In British Patent Specification GB-A-1,458,569 (The Procter & Gamble Comp.) polyglycerol is prepared by condensing glycerol in the presence of 2.56 wt % of monoacetin and 0.11 wt % of sulphuric acid. The application of this acid catalyst leads to 2.6 and 3.1 wt % of cyclic polymers in the final product.
In International Patent Application WO 93/25511 (Henkel.) which was filed on 4 Jul. 1993, but which has a priority date of 12 Jun. 1992 there has been disclosed a process of oligomerizing glycerol to form preponderantly linear diglycerol. This formation of diglycerol is effected by using a zeolite catalyst. The zeolites which can be used according to this reference are natural zeolites, like chabasite, erionite or clinoptilolithe, and synthetic zeolites, such as zeolite X, zeolite Y, zeolite L, mordenite and particularly zeolite A. In the examples Wessalite CD (ex Degussa, Frankfurt) having a pore size of 0.42 nanometer and zeolite 13X (ex Union Carbide, U.S.A.) having a pore size of 0.7 nanometer have been used, both zeolites being in the alkaline form. It cannot be deduced from this reference that the use of acid zeolites having a specific pore size would lead to oligomers of glycerol with a high percentage of cyclic oligomers.
It has now been found that polymers of glycerol with a high percentage of cyclic polymeric products are obtained if glycerol or its derivatives glycidol or isopropylidene glycerol are polymerized in the presence of an acid zeolite catalyst which has an average pore diameter of at least 0.6 nanometer (nm).
Zeolites are crystalline aluminosilicates of alkali metals or alkaline earth metals, represented by the general formula M.sub.2 /.sub.n O.Al.sub.2 O.sub.3.ySiO.sub.2.wH.sub.2 O where y is 2 or greater, n is the cation valence and w represents the water contained in the zeolite. Particularly, the so-called Y zeolites and zeolite beta appeared to be very effective in the present invention.
Surprisingly no polymerization of glycerol took place when the glycerol was heated in the presence of synthetic bleaching earth or an acid activated montmorillonite, whereas acid activated bleaching earth only gave some polymerization with only linear polymerization products. Moreover, it appeared that zeoliteS having an average pore diameter or size below 6 nanometer (nm) did not or hardly produce any cyclic polymerization products. An advantage of the use of the acid zeolite catalysts is that they can easily be regenerated, e.g. by heating them to 550.degree.

REFERENCES:
patent: 3968169 (1976-07-01), Seiden et al.
Kempe, et al: "Herstellung von 2,2-dimethyl-4-methylol-1,3-dioxolan", Z. Chemie, vol. 26, No. 3, 1986, pp. 97-98.
Database WPI, Derwent Publications Ltd., AN 86-322229(49) & JP,A,61 238 749, Oct. 24, 1986 cited in the application, see abstract.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymerisation of glycerol using a zeolite catalyst does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymerisation of glycerol using a zeolite catalyst, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymerisation of glycerol using a zeolite catalyst will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-392433

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.