Coating processes – Direct application of electrical – magnetic – wave – or... – Pretreatment of substrate or post-treatment of coated substrate
Patent
1998-04-17
2000-12-05
Pianalto, Bernard
Coating processes
Direct application of electrical, magnetic, wave, or...
Pretreatment of substrate or post-treatment of coated substrate
427162, 427255395, 427296, 427307, 427322, 427508, 427534, 427558, 427559, 427569, 427575, H05H 100
Patent
active
061563943
ABSTRACT:
A pretreatment method for use in manufacturing an improved optical component comprises (i) providing a polymeric optical substrate; and (ii) exposing the polymeric optical substrate to electromagnetic energy having a wavelength of about 30 nm to about 350 nm. The exposure of the polymeric optical substrate to the electromagnetic energy substantially improves adhesion between the substrate and an optical coating deposited onto the substrate following pretreatment. The invention addresses the significant need for coated plastic optics by providing a method to achieve reliable adhesion of optical coatings placed on polymeric optical substrates. Specifically, this invention enables improved adhesion for even highly curved or shaped parts which have been historically more difficult to coat. The pretreatment method is particularly useful for molded substrates such as molded polymethylmethacrylate.
REFERENCES:
patent: 5068021 (1991-11-01), Sichmann et al.
patent: 5400317 (1995-03-01), Strasser et al.
patent: 5403663 (1995-04-01), Sichmann et al.
Conley, D.J.; Rzad, S.J.; Burrell, M.; and Chera, J., "Surface Modification and Paint Adhesion," Polymeric Materials & Science & Engineering, vol. 62--Conference Proceedings, pp. 447-451, Boston, Ma, Spring, 1990 (No month avail.).
Preuss, S.; Langowski, H.C.; Damm, T.; and, Stuke, M., "Incubation/Ablation Patterning of Polymer Surfaces with sub-um Edge Definition for Optical Storage Devices," Appl. Phys. A 43, 360-362 (1992) (No month avail.).
Renschler, Clifford L. and Martinez, Robert J., "Study of a Potential Abrasion-Resistant Lens Coating:Adhesion to PMMA," Solar Energy vol. 36, No. 1, pp. 1-2, 1986 (No month avail.).
Ponter, A.B.; Jones, W.R., Jr.; and, Jansen, R.H., "Surface Energy Changes Produced by Ultraviolet-Ozone Irradation of Poly(Methyl Methacrylate), Polycarbonate, and Polytetrafluoroethylene," Polymer Engineering and Science,, vol. 34, No. 16, pp. 1233-1238, Aug., 1994.
Lazare, Sylvain; Hoh, Peter D.; Baker, John M.; and Srinivasan, R., "Controlled Modification of Organic Polymer Surfaces by Continuous Wave Far-Ultraviolet (185 nm) and Pulsed-Laser (193 nm) Radiation: XPS Studies," J. Am. Chem. Soc. 106, pp. 4288-4290, 1984 (No month avail.).
Milde, F.; Goedicke, K,; and, Fahland, M., "Adhesion Behavior of PVD Coatings on ECR Plasma and Ion Beam Treated Polymer Films," Thin Solid Films 279, pp. 169-173 (1996) (No month avail.).
Hollander, Andreas and Wertheimer, Michael R., "Vacuum Ultraviolet Emision from Microwave Plasmas of Hydrogen and its Mixtures with Helium and Oxygen," J. Vac. Sci. Technol. A 12(3), pp. 879-880, May/Jun., 1994.
Liston, E.M.; Martinu, L.; and, Wertheimer, M.R., "Plasma Surface Modification of Polymers for Improved Adhesion: a Critical Review," J. Adhesion Sci. Technol., vol. 7, No. 10, pp. 1091-1127 (1993) (No month avail.).
Shi, M.K.; Selmani, A.; Martinu, L.; Sacher, E.; Wertheimer, M.R.; and, Yelon, A., "Fluoropolymer Surface Modification for Enhanced Evaporated Metal Adehesion," J. Adhesion Sci. Technol., vol. 8, No. 10, pp. 1129-1141, 1994 (No month avail.).
Liston, E.M.; Martinu, L.; and, Wertheimer, M.R., "Plasma Surface Modification of Polymers for Improved Adhesion: a Critical Review," J. Adhesion Sci. Technol. vol. 7, No. 10, pp. 1091-1127, 1993 (No month avail.).
Martinu, L.; Klemberg-Sapieha, J.E.; Kuttel, O.M.; Raveh, A.; and, Wertheimer, M.R., "Critical Ion Energy and Ion Flux in the Growth of Films by Plasma-Enhanced Chemical-Vapor Deposition," J. Vac. Sci. Technol. A 12(4), pp. 1360-1364, Jul./Aug. 1994.
Reinke, P.; Bureau, S.; Klemberg-Sapieha, J.E.,; and, Martinu, L., "Ion Energy Distributions in Dual-and Single-Mode Microwave/Radio-Frequency Plasma," J. Appl. Phys. 78(8), pp. 4855-4858, Oct. 15, 1995.
Klemberg-Sapieha, J.E.; Kuttel, O.M.; Martinu, L.; and, Wertheimer, M.R., "Dual Microwave-R.F. Plasma Deposition of Functional Coatings," Thin Solid Films, 193, 194, pp. 965-972, 1990 (No month avail.).
Leroux, P.; Raveh, A.; Klemberg-Sapieha, J.E.; and, Martinu, L., "Mechanical Properties of Plasma Deposited Functional Coatings Determined by Microscratch Measurements," Society of Vacuum Coaters, 36th Annual Technical Conference Proceedings, 1993 (No month avail.).
Vallon, S.; Drevillon, B.; Poncin-Epaillard, F.; Klemberg-Sapieha, J.E.; and, Martinu, L., "Argon Plasma Treatment of Polycarbonate: in situ Spectroellipsometry Study and Polymer Characterizations," Published JVSTA 14(6), pp. 3194-3201, Nov./Dec. 1996.
Esrom, Hilmar and Kogelschatz, Ulrich, "Modification of Surfaces with New Excimer UV Sources," Thin Solid Films, 218, pp. 231-246 (1992) (No month avail.).
Hollander, Andreas and Wertheimer, Michael R., "Vacuum Ultraviolet Emission from Microwave Plasmas of Hydrogen and its Mixtures with Helium and Oxygen," J. Vac. Sci. Technol. A 12(3), pp. 879-882, (May/Jun. 1994).
Klemberg-Sapieha, J.E., "Scanning Probe Microscopy on Polymer Surfaces,"Plasma Processing of Polymers, pp. 233-245, (1997) (No month avail.).
Martinu, L., "Plasma Deposition and Testing of Hard Coatings on Plastics," Plasma Processing of Polymers, pp. 247-272, (1997) (No month avail.).
"New Material & Products,"Plastics Industry News, vol. 34, No. 4, pp. 51-52, (Apr. 1988).
Klemberg-Sapieha Jolanta E.
Martinu Ludvik
Schultz Yamasaki Nancy Lee
Optical Coating Laboratory, Inc.
Pianalto Bernard
LandOfFree
Polymeric optical substrate method of treatment does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polymeric optical substrate method of treatment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymeric optical substrate method of treatment will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-959334