Polymeric matrix compatibilized naphthopyrans

Compositions – Light transmission modifying compositions – Displaying color change

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C549S389000, C549S382000, C549S331000, C549S362000, C549S058000, C549S060000, C546S256000, C546S280400, C546S281100, C546S282700, C546S277400, C546S282400, C548S454000, C524S110000, C525S279000, C525S403000, C351S163000

Reexamination Certificate

active

06555028

ABSTRACT:

DESCRIPTION OF THE INVENTION
The present invention relates to certain novel naphthopyran compounds. More particularly, this invention relates to photochromic naphthopyrans having substituents that make the compounds more compatible for use in different matrices, e.g., hydrophilic or hydrophobic polymeric matrices. This invention also relates to compositions and articles containing such novel photochromic compounds. When exposed to electromagnetic radiation containing ultraviolet rays, such as the ultraviolet radiation in sunlight or the light of a mercury lamp, many photochromic compounds exhibit a reversible change in color. When the ultraviolet radiation is discontinued, such a photochromic compound will return to its original color or colorless state.
Various classes of photochromic compounds have been synthesized and suggested for use in applications in which a sunlight-induced reversible color change or darkening is desired. U.S. Pat. No. 3,567,605 (Becker) describes a series of pyran derivatives, including certain benzopyrans and naphthopyrans. U.S. Pat. No. 5,458,814 describes photochromic 2,2-di-substituted-5,6-substituted-2H-naphtho[1,2-b]pyran compounds primarily for use in lenses and other plastic transparencies. These compounds have an acceptable fade rate in addition to a high activated intensity and a high coloration rate. U.S. Pat. No. 5,585,042 discloses 3,3-di-substituted-8-substituted-3H-naphtho[2,1-b]pyran compounds for similar uses. These compounds exhibit an improved solar response, a higher activating wavelength than unsubstituted naphthopyrans, and an acceptable bleach or fade rate. U.S. Pat. No. 5,645,767 describes photochromic indeno[2,1-f]naphtho[1,2-b]pyrans having a high activated intensity, an acceptable fade rate and high coloration rate.
International Patent Application WO 97/05213 describes a photochromic monomer having a photochromic dye moiety bonded to an organic spacer group which terminates with a polymerizable group. It is reported that when the photochromic monomer is incorporated into a cross-linking polymerizable casting composition, the photochromic material has a reduced sensitivity to temperature.
Although 3H-naphtho[2,1-b]pyrans, 2H-naphtho[1,2-b]pyrans and indeno[2,1-f]naphtho[1,2-b]pyrans of good intensity and reasonable fade are currently available, in certain circumstances it is desirable to modify the comparability of the photochromic compound with the substrate or host material. By making the photochromic compound more compatible with the polymeric matrix, it is less likely that the combination will demonstrate cloudiness or haze and phase separation which may become evident as the formation of crystals within the matrix or a bloom on the surface resulting from the migration of the photochromic after curing, and it is more likely that the photochromic compound will be more soluble and uniformly distributed throughout the matrix. Other properties of the photochromic compounds that may or may not be effected by the substituents of the present invention include fade and/or activation rate, saturated optical density, molar absorptivity or molar extinction coefficient, activated color and leachability from the polymeric matrix. Modifications to such properties may be done to match the same properties of complementary photochromic compounds or to enable the use of such compounds in hydrophilic or hydrophobic coatings, thin films or in rigid to flexible plastic matrices, e.g., contact lenses.
In accordance with the present invention, there have been discovered novel photochromic compounds; namely, certain 2H-naphtho[1,2-b]pyrans, 3H-naphtho[2,1-b]pyrans and indeno[2,1-f]naphtho[1,2-b]pyrans, that have at least one substituent containing terminal and/or pendant groups selected from hydroxyl, carboxyl, sulfo, sulfono, (meth)acryloxy, 2-(methacryloxy)ethylcarbamyl (—OC(O)NHC
2
H
4
OC(O)C(CH
3
)═CH
2
), epoxy or a mixture thereof. The substituent having the aforementioned groups is a residue of an alkoxylated diol or an organic polyol. Appropriate selection of the substituent, e.g., chain length, the number and type of the terminal and/or pendant groups, enables modification of the aforementioned properties. For example, an increase in the number of or altering the type of substituents on the naphthopyran having terminal groups selected from hydroxyl, carboxyl, sulfo, sulfono or a mixture thereof causes an improvement in the substituted compounds compatibility with polar or hydrophilic matrices and vice versa. Use of the polymerizable groups, epoxy, (meth)acryloxy, i.e., acryloxy or methacryloxy, or 2-(methacryloxy)ethylcarbamyl with or without the aforementioned groups on the substituent enables reacting and binding the photochromic compound into the polymeric matrix to prevent extraction or leaching of the photochromics for example, when the matrix is in contact with liquids. Depending on the location of the previously mentioned substituent(s), certain other substituents may also be present on the naphtho, pyrano and indeno portions of the aforedescribed compounds.
DETAILED DESCRIPTION OF THE INVENTION
In accordance with the present invention, it has been discovered that certain properties, e.g., solubility and/or compatability in hydrophilic coatings, films and plastics, leachability, fade rate, activation rate, saturated optical density, fatigue rate, and molar absorption of selected photochromic 2H-naphtho[1,2-b]pyrans, 3H-naphtho[2,1-b]pyrans and indeno[2,1-f]naphtho[1,2-b]pyrans may be modified by including on such compounds at least one substituent containing terminal and/or pendant groups selected from hydroxyl, carboxyl, sulfo, sulfono, (meth)acryloxy, 2-(methacryloxy)ethylcarbamyl, epoxy or a mixture thereof. The substituent may be located on the naphtho, indeno and/or on the pyrano portion of the naphthopyran.
Other than where otherwise indicated, all numbers expressing values, such as, wavelengths, quantities of ingredients or reaction conditions used herein are to be understood as modified in all instances by the term “about” which means near to in number, quantity, degree, etc.
The disclosures of the related applications, patents and articles cited herein describing materials and/or procedures for making materials such as extended triols, polyester polyols, polycarbonate polyols, carbohydrates, macrocyclic acetals containing lipophilic substituents, propargyl alcohols, photochromic compounds, polymeric host materials, contact lenses and coating application methods are incorporated herein, in toto, by reference.
The naphthopyrans of the present invention also may have certain other substituents. Specifically, the 2H-naphthopyrans may have substituents at the 5 and 6 positions and may have additional substituents at the 7, 8, 9 and 10 positions; the 3H-naphthopyrans may have substituents at the 8 and 9 positions and may have additional substituents at the 5 and 6 positions; and the indeno-fused naphthopyrans may have certain substituents at the 5, 6, 7, 8, 9, 10, 11, 12 or 13 positions. The aforedescribed naphthopyrans may be represented by graphic formulae I, II and III in which the internal numbers 1 through 13 identify the ring atoms of the naphthopyrans and letters a through n represent the sides of the naphthopyran rings. In the definition of the substituents shown in the following graphic formulae I, II and III, like symbols have the same meaning unless stated otherwise.
In graphic formulae I, II and III, R
1
, R
1
′, R
2
, each R
3
, R
4
, R
5
and R
6
may be the group R. The R group may be represented by the following formulae IVA to IVF:
—A  (IVA);
—D—A  (IVB);
—D—E—U  (IVC);
—D—U  (IVD);
—E—U  (IVE);
or
—U  (IVF);
wherein —A is represented by the following formula:
—[(OC
2
H
4
)
x
(OC
3
H
6
)
y
(OC
4
H
8
)
z
]—J
wherein —J is selected from: —OCH
2
COOH; —OCH(CH
3
)COOH; —OC(O

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymeric matrix compatibilized naphthopyrans does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymeric matrix compatibilized naphthopyrans, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymeric matrix compatibilized naphthopyrans will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3063093

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.