Polymeric materials

Fabric (woven – knitted – or nonwoven textile or cloth – etc.) – Nonwoven fabric – Autogenously bonded nonwoven fabric

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S198000, C428S223000

Reexamination Certificate

active

06277773

ABSTRACT:

This invention relates to processes for the production of polymer sheet materials from oriented polymer fibres and to the products of such processes.
One method which is widely used to produce high modulus polymer sheets is the formation of fibre reinforced composites using, e.g. oriented polyethylene fibres in order to reinforce the polymer matrix. The manufacture of such composites is a complex operation and in particular requires careful mixing of the polymer and the fibres if the composite is to exhibit homogeneous mechanical properties.
There have been proposals to produce polymeric sheets by compression of networks of polymer fibres at elevated temperatures most notably in relation to thermotropic liquid crystal polymers. European Patent 354285 and U.S. Pat. No. 4,384,016 both describe processes in which fibres of a liquid crystal polymer are hot pressed to produce an oriented polymer sheet. European Patent Application 116845, describes a process in which a network of fibres of ultra-high molecular weight polyethylene are hot compressed to form polymer sheets. In the processes taught in this document the fibres are compressed and heated simultaneously. The products retain a significant proportion of the properties of the fibres in the direction in which the fibres are aligned but the mechanical properties of the products in the direction transverse to that in which the fibres are aligned is less than ideal. These processes are relatively unaffected by the choice of compaction temperature. The polymer fibres do not melt during the process.
We have now discovered a novel process whereby an assembly of fibres of oriented polymer may be hot compressed to form a sheet having superior mechanical properties particularly in the direction transverse to that in which the fibres are aligned. The novel processes are distinguished from those of EPA 116845 by an initial processing step in which the fibres are brought to and held at the compaction temperature whilst subject to a pressure sufficient to maintain the fibres in contact, the contact pressure, and thereafter compacted at a higher pressure, the compaction pressure. In the processes of this invention the compaction temperature does influence the mechanical properties of the compacted product. In the processes of this invention a proportion of the polymer material in the fibres melts and subsequently recrystallises and it is this melt phase which serves to bind the fibres together.
Accordingly from one aspect this invention provides a process for the production of a polymer sheet in which an assembly of oriented polymer fibres is maintained in intimate contact at an elevated temperature sufficient to melt a proportion of the polymer and subsequently compressed so as to produce a coherent polymer sheet.
In the preferred processes of this invention the conditions and more particularly the temperature at which the fibres are compacted will be such as to cause a portion of the polymer to be selectively melted. On cooling the molten materials recrystalise to give a phase with a lower melting point than the original fibre. The presence of a second phase in the compacted product may readily be detected e.g. by D.S.C. measurements. In general the amount of material melted is preferably at least 5% and usually at least 10% of the original. The applicants believe that this minimum amount is required in order fill the spaces between fibres upon compaction and hence produce a product which does not contain trapped air. Processes in which a greater proportion of the polymer material is melted at the contact stage are useful in so far as the mechanical properties of the product in the direction transverse to the alignment of the fibres may be improved but this improvement is achieved at the expense of the properties in the direction of the alignment of the fibres. We have discovered that the improvements in the transverse direction are not directly proportional to the losses in the direction of alignment and that the loss is greater than the improvement. For most applications of the products of this invention the preferred processes are those which are carried out in a manner which selectively melts from 5 to 10% by weight of the polymer material although processes which melt from 10 to 20% by weight of the polymer or even up to 50% by weight may be useful.
In a preferred embodiment the temperature at which the fibres are conpacted is not greater than the peak temperature of melting i.e. the temperature of which the endotherm measured by Differential Scanning Calorimetry (DSC) of the polymer fibres reaches its highest point. The minimum temperature at which the fibres should be contacted is preferably that at which the leading edge of the endotherm extrapolated to zero intersects the temperature axis.
The pressure at which the assembly of fibres is maintained during this stage of the process will be such as to maintain the individual fibres in intimate contact but not such as will compact them and in particular not inhibit the selective melting of the polymer. In general pressures in the range 0.5 to 2.0 MPa are preferred. The precise value is not normally critical.
The compaction pressure exerted upon the heated assembly of oriented polymer fibres should be sufficient to produce a homogeneous product but should not be so great as to cause the assembly to be extruded. If necessary a closed mould may be used to prevent extrusion and thus allows the use of higher temperatures or pressures if required. In general, pressures in the range of 40 to 50 MPa have been found to be useful. The minimum pressure required to process an assembly of a particular polymer fibre at a particular temperature may be determined by routine experiment.
The time required for the processes of this invention may be determined by empirical means. The time required to bring the assembly of fibres up to the requisite temperature will vary with the nature and size of the assembly, the nature of the polymer and the heating means which are employed. The time is not critical provided it is sufficient to enable the selective melting to be achieved.
The time required for the compaction step is also non-critical except in so far as it must be sufficiently long to enable the assembly to be compacted. At the preferred temperatures the minimum time may be of the order of seconds although longer times may be utilised. Processes which utilise shorter compaction times e.g. 5 to 30 seconds may be advantageous in so far as they may conveniently be operated upon a continuous basis for example a uniaxially aligned assembly of heated fibres may be passed between a pair of rollers.
The products of the processes of this invention preferably retain at least 50% and more preferably at least 75% of the mechanical properties, especially the modulus of the oriented fibres in the direction in which those fibres are aligned. The products exhibit a homogeneous appearance to the eye. Products which when stressed in the direction transverse to that in which the fibres are aligned fibrillate, i.e. break whilst leaving the polymer fibres essentially intact are not homogeneous. The products of this invention exhibit homogeneous behaviour when stressed in this transverse direction. Preferably they will be such that the attenuation of an ultrasonic C scan shows not more than a 20% variation and preferably not more than a 10% variation over the whole sample.
The assembly of oriented polymeric fibres which may be utilised in the processes of this invention may take a variety of forms. In particular they may be arranged as an uniaxially aligned bundle or a twisted bundle of fibres or an assembly of chopped fibres or as a mat of interwoven bundles or a mat formed by layering of bundles of fibres wherein the bundles in each layer are aligned at an angle, e.g. conveniently perpendicular to one another. The products obtained by processing such mats may thus retain the majority of the properties of the oriented fibres in more than one direction. The bundles may be assembled and pressed into any convenient shape.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymeric materials does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymeric materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymeric materials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2543318

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.