Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...
Reexamination Certificate
2001-03-28
2003-12-09
Egwim, Kelechi (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
At least one aryl ring which is part of a fused or bridged...
C522S006000, C524S808000, C524S818000, C526S263000, C526S265000, C526S313000, C526S315000
Reexamination Certificate
active
06660802
ABSTRACT:
This invention relates to a polymeric material and particularly, although not exclusively, relates to a polymeric material which is at least partially formed from a 1,2-substituted ethene compound, for example a substituted styrylpyridinium compound.
UK Patent No. GB 2 030 575 B (Agency of Science and Technology) describes a photosensitive resin which is prepared by reacting a styryl pyridinium salt which possesses a formyl or acetal group on the styryl phenyl group with a polyvinyl alcohol or a partially saponified polyvinyl acetate. In the resin, the group —CH═CH— is photosensitive and, accordingly, the resin can be used in, for example, screen printing where it is found to exhibit high sensitivity.
The present invention is based on the discovery of surprising properties of 1,2-substituted ethene compounds of the type described which allow polymeric materials to be prepared which have various useful properties.
According to a first aspect of the present invention, there is provided a method of preparing a first polymeric compound which comprises providing a compound of general formula:
or a salt thereof where A and B are the same or different and at least one comprises a relatively polar atom or group and R
1
and R
2
independently comprise relatively non-polar atoms or groups, in a solvent of a type in which ethene itself is generally insoluble and causing the groups C═C in said compound to react with one another to form a polymeric structure.
Preferably, R
1
and R
2
are independently selected from a hydrogen atom or an optionally substituted, preferably unsubstituted, alkyl group. Preferably, R
1
and R
2
represent the same atom or group. Preferably, R
1
and R
2
represent a hydrogen atom.
Preferably, said solvent is a polar solvent. Preferably said solvent is an aqueous solvent. More preferably, said solvent consists essentially of water.
Preferably, said compound of general formula I is provided in said solvent at a concentration at which molecules of said compound aggregate. Aggregation of said compound of general formula I may be shown or inferred from the results of various analyses as hereinafter described and any one or more of such analyses may be used. Preferably, said compound of general formula I is provided in said solvent at or above a concentration suggested by relevant vapour pressure measurements as being a point of aggregation of the compound.
It is believed that said molecules of compound I form aggregates or micelles in the solvent, with the C═C bonds aligned with one another so that the molecules effectively align substantially parallel to one another.
Preferably, the molecules align with groups A and B adjacent to one another.
Said compound of general formula I may be provided in said solvent at a concentration of at least 0.5 wt %, preferably at least 1.0 wt % and, more preferably, at least 1.5 wt %.
The groups C═C in said compound are preferably caused to react in a photochemical reaction. Preferably, the method comprises inducing a photochemical reaction, suitably using ultraviolet light. Preferably, in the method, light of up to 500 nm wavelength is used.
Preferably, A and B are independently selected from optionally-substitute alkyl, cycloalkyl, cycloalkenyl, cycloalkynyl, aromatic and heteroaromatic groups. Where group A or B has a cyclic structure, five or, more preferably, six membered rings are preferred.
More preferably, A and B are independently selected from optionally substituted aromatic and heteroaromatic groups, with five or, more preferably, six-membered such groups being especially preferred. Preferred heteroatoms of said heteroaromatic groups include nitrogen, oxygen and sulphur atoms of which oxygen and especially nitrogen, are preferred. Preferred heteroaromatic groups include only one heteroatom. Preferably, a or said heteroatom is positioned furthest away form the position of attachment of the heteroaromatic group to the group C═C. For example, where the heteroaromatic group comprises a six-membered ring, the heteroatom is preferably provided at the 4-position relative to the position of the bond of the ring with the group C═C.
Unless otherwise stated, optionally substituted groups described herein, for example groups A and B, may be substituted by halogen atoms, and optionally substituted alkyl, acyl, acetal, hemiacetal, acetalalkyloxy, hemiacetalalkyloxy, nitro, cyano, alkoxy, hydroxy, amino, alkylamino, sulphinyl, alkylsulphinyl, sulphonyl, alkylsulphonyl, sulphonate, amido, alkylamido, alkylcarbonyl, alkoxycarbonyl, halocarbonyl and haloalkyl groups. Preferably, up to 3, more preferably up to 1 optional substituents may be provided on an optionally substituted group.
Unless otherwise stated, a alkyl group may have up to 10, preferably up to 6, more preferably up to 4 carbon atoms, with methyl and ethyl groups being especially preferred.
Preferably, A and B each represent polar atoms or groups. Preferably, A and B each represent optionally-substituted aromatic or heteroaromatic groups wherein the “p” orbital of the aromatic groups are aligned with those of the group C═C. Preferably, A and B represent different atoms or groups.
Preferably, one of the groups A and B includes an optional substituent which includes a carbonyl or acetal group with a formyl group being especially preferred. The other one of groups A and B may include an optional substituent which is an alkyl group, with an optionally substituted, preferably unsubstituted, C
1-4
alkyl group, for example a methyl group, being especially preferred.
Preferably, group A represents a phenyl group substituted, preferably at the 4-position relative to the group C═C, by a formyl group or a group of general formula:
where X is an integer from 1 to 6 and each R
3
is independently an alkyl or phenyl group or together form an alkalene group.
Preferably, group B represents a group of general formula:
wherein R
1
represents a hydrogen atom or an alkyl or aralkyl group, R
5
represents a hydrogen atom or an alkyl group and X
−
represents a strongly acidic ion.
Preferred compounds of general formula I for use according to the present invention include those referred to on page 3 line 8 to line 39 of GB 2 030 575 B and said compounds are hereby incorporated into this specification.
Compounds of general formula I for use according to the present invention may be prepared as described in GB 2 030 575 B and such preparatory methods are also hereby incorporated into this specification.
The invention extends to a novel first polymeric compound preparable by a method according to said first aspect.
According to a second aspect of the present invention, there is provided a novel first polymeric compound having the formula:
wherein A, B, R
1
and R
3
are as described in any statement herein and n is an integer.
According to a third aspect of the present invention, there is provided a method of preparing a formulation comprising providing a first polymeric compound according to said first or second aspects in a solvent together with a second polymeric compound and intimately mixing the compounds.
Preferably, said second polymeric compound includes one or more functional groups capable of reacting with said first polymeric compound, preferably in an acid catalysed reaction. Said reaction is preferably a condensation reaction. Preferably, said second polymeric compound includes a functional group selected from an alcohol, carboxylic acid, carboxylic acid derivative, for example an ester, and a amine group. Preferred second polymeric compounds include optionally substituted, preferably unsubstituted, polyvinylalcohol, polyvinylacetate, polyalkylene glycols, for example polypropylene glycol, and collagen (and any component thereof).
Preferably, said second polymeric compound is a solid under ambient conditions. Preferably, said intimate mixing is carried out at an elevated temperature. Preferably, mixing is carried out in the same solvent in which compound I is prepared. The mixture may include further polymeric compounds which may be t
Crowther Nicholas John
Eagland Donald
Calfee Halter & Griswold LLP
Egwim Kelechi
LandOfFree
Polymeric material does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polymeric material, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymeric material will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3163481