Polymeric films and packages produced therefrom

Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Physical dimension specified

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S475800, C428S476100, C428S476300, C428S476900, C428S512000, C428S513000, C428S521000, C428S523000

Reexamination Certificate

active

06632521

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention concerns polymeric films and packages produced therefrom, and more particularly it concerns polymeric films which are heat sealable to non-woven webs to produce peel openable packages, for example for medical equipment.
2. Description of the Related Art
The use of heat sealable polymeric films is widely used in the packaging art. However, gaining access to articles which have been packaged by heat sealing such films to themselves or to other substrates often presents problems due to the strengths of the seals which are produced. In some instances the problem is comparatively minor, for example where tearing of the film is acceptable. In others, the problem is more major, and various proposals have been made hitherto to overcome this problem, for example by constructing the films in such a way that the heat seals themselves are weak enough that they part if sufficient force is applied, or by designing the films so that they fail within their respective structures when a peeling force is applied, such failure being by delamination of a multi-layered film or by rupture within the thickness of a layer of the film. Peeling by failure of a heat seal or by delamination within a film is usually referred to in the art as adhesive failure whereas rupture within the thickness of a film is usually referred to as cohesive peeling.
Heat seals formed between heat sealable polymeric films and other substrates can present additional problems, and although they can be arranged to peel by adhesive or cohesive peeling mechanisms, heat seals to non-woven materials, for example paper, present special problems in certain packaging applications. More particularly, the peeling of such seals can result in the removal of fibers from the non-woven material, and these can cause contamination for example of packaged medical equipment. This tends to be a particular problem with so-called “direct seals” in which a heat sealable film is heat sealed directly to an uncoated paper, peeling being by peeling the heat seal material from the fibers of the paper.
“Direct seals” between polymeric films and paper are attractive commercially because they can be formed by directly adhering polymeric films to paper. However, if the seals are to have sufficient strength to maintain their integrity during transport of packages made using them, the release of loose fibers during peeling of the seals tends to be a problem. Whilst this problem can be reduced by selecting the materials used to form the heat seal, it is difficult to achieve seals which peel reliably without the release of fibers from the paper. More particularly, too low a heat sealing temperature will result in insufficiently strong seals, whereas too high a heat sealing temperature will result in seals which will be too strong, resulting in tearing of the paper when attempts are made to peel these seals. Furthermore, the temperature and pressure ranges over which heat seals can be obtained with acceptable peelability using conventional heat seal materials tends to be narrow.
BRIEF SUMMARY OF THE INVENTION
According to the present invention there is provided a polymeric film having at least one outer layer comprising a blend of low density polyethylene and a poly-(alkylstyrene).
Films in accordance with the present invention have been heat sealed directly to paper webs over a relatively wide temperature range to produce packages having “direct seals” which can be readily peeled without substantial release of free fibres from the paper, peeling being by failure of the bond between the outer layer of the film and the paper web to which it has been heat sealed. In addition, more consistent peel strengths have been achieved with films of the present invention over a wider temperature range compared with those obtained for analogous films which use the same low density polyethylene alone as the heat seal material. This has also been achieved using relatively short dwell times. Furthermore, films of the present invention have exhibited more consistent peel strengths over a wider temperature range than analogous films which use linear low density polyethylene alone as the heat seal material.
Heat seals formed between films in accordance with the present invention and paper have also shown good peelability when compared with heat seals formed by similar films having heat seal layers consisting of blends of ethylene/vinyl acetate copolymers and poly-(&agr;-methylstyrene) to paper, where delamination of the paper itself tends to occur, or with blends of linear low density polyethylene combined with the same poly-(&agr;-methylstyrene), where the heat seal strength to the paper tends to be less than that of comparable heat seals of the same linear low density polyethylene directly to the same paper.
Films in accordance with the present invention can therefore be used to form satisfactory and peelable heat seals over a wider temperature range than has been obtainable with prior art heat seal materials, thereby enabling satisfactory seals to be produced even when the precise temperature obtainable by the equipment which is used is uncertain, for example due to poor maintenance or uneven temperature distribution over the heat sealing surface.
Although the strength of a specific heat seal should be sufficiently strong to prevent failure due to the weight of the contents of a package, strengths of less than 1.0N/15 mm are generally considered to be too weak. However, in order to achieve peelability for heat seals “direct seals” to paper which peel without substantial fiber loss therefrom, it is generally desirable that such seals have peel strengths of not more than 2.0N/15 mm. The peel test for these purposes is preferably effected by first forming the heat seal to be tested and then adhering the paper side of the laminate to the circumference of an approximately 150 mm diameter wheel which is free to rotate about its axis. The force required to pull the film away from the paper is then measured, the pulling being effected substantially radially of the wheel, that is substantially perpendicularly to the paper.
DETAILED DESCRIPTION OF THE INVENTION
The low density polyethylene used in accordance with the present invention will in general have a density of from 0.915 to 0.930 g/cm
3
. The melt flow index of the low density polyethylene is preferably in the range of 2.0 to 40.0 g/10 min according to ASTM D1238-95. Particularly preferred low density polyethylenes for use in accordance with the present invention have a density of about 0.918 g/cm
3
and a melt flow index of about 15 g/10 min according to ASTM D1238-95.
The poly-(alkylstyrenes) are preferably derived from one or more methylstyrenes, the methyl substituent being on the ethylenic moiety or on the phenyl ring thereof. Preferred poly-(alkyl-styrenes) for use in accordance with the present invention include poly-(&agr;-methylstyrene) and poly-(vinyltoluene).
The amount of poly-(alkylstyrene) in the blend should be at least sufficient to increase the heat seal strength of the low density polyethylene to the paper web to which it is to be heat sealed, and it preferably represents not more than 20% by weight and more preferably not more than 15% by weight of the blend, a preferred range being from 2 to 12% by weight of the blend. The poly-(alkylstyrenes) used in the blends preferably have a mean molecular weight M
W
of from 800 to 2000.
Films in accordance with the present invention preferably consist of two or more polymeric layers, at least one of the outer layers being formed from a blend of low density polyethylene and a poly-(alkylstyrene). The nature of the other layers and their respective thicknesses will in general be selected according to the end use to be made of the films of the present invention. However, the films will usually have an outer layer of a blend of low density polyethylene and a poly-(alkylstyrene) which is at least 5 &mgr;m thick. Thicker layers of the blend can be used, for example up to 15 &mgr;m or more, but provided a peela

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymeric films and packages produced therefrom does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymeric films and packages produced therefrom, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymeric films and packages produced therefrom will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3126011

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.