Polymeric films

Stock material or miscellaneous articles – Composite – Of polyamide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S09200D, C428S319900

Reexamination Certificate

active

06309756

ABSTRACT:

This invention concerns polymeric films, and in particular polypropylene films having a low heat seal threshold combined with good antistatic properties.
There have been many proposals for heat sealable polypropylene films consisting of a base layer of a propylene homopolymer and an outer layer of a polyolefin which facilitates heat sealing of the film to itself or to another polymeric material. There have also been many proposals for modifying the properties of such films by the inclusion of various additives in their outer layers or within one or more layers within such films. Examples of such additives include antiblock agents such as silica, slip agents such as fatty acid amides, and antistatic agents such as bis-ethoxylated amines. There is a continuing demand for polypropylene films having improved properties. However, there are often disadvantages which accompany the provision of an advantage in such films. Thus an improvement in the antistatic properties of a film resulting from the use of a particular additive can result in reduced optical properties such as film gloss and/or transparency.
DE4432777 proposes the use of blends of 20 to 50wt % of hydrophobic polyether block amides with polyolefins as providing such films with permanent antistatic and/or condensation reducing properties. However, the heat seal thresholds of films which use the blends disclosed in this prior art document as heat seal layers have been found to be high with low ultimate seal strengths, and the use of these blends runs counter to the desire to provide heat sealable films with low heat seal thresholds.
According to the present invention there is provided a polypropylene film comprising a base layer of a propylene polymer having an outer layer comprising a blend of a polyether block polyamide, polypropylene and polybutene-1, wherein the polybutene-1 represents from 40 to 60 wt % of the blend.
Films in accordance with the present invention not only have shown good antistatic properties, but they have also shown particularly low heat seal thresholds when compared with films having outer layers formed from the polyether block polyamide and polypropylene alone. Films in accordance with the present invention have also shown desirable matt surface properties. The polybutene-1 content of the blend is preferably about 50% by weight.
Although the said outer layer of films of the present invention can consist of specified blend alone, it is generally preferred that they also contain other additives used in polypropylene films, for example an antiblock agent, for example silica, a silicate or a polymeric antiblock agent, e.g. a polyacrylate or a polyamide, and/or a slip agent, for example a fatty acid amide, e.g. erucamide or oleamide.
The base layer of films of the present invention is preferably of a propylene homopolymer, and they can be voided or non-voided. When voided, voiding can be induced using organic or inorganic voiding agents, for example polyamides, polyesters, e.g. polymethyl methacrylate, polyethylene terephthalate or polybutylene terephthalate, or chalk. If desired, the base layers of films of the present invention may contain a pigment which does not induce voiding in addition to or alternatively to the presence of a voiding agent, for example titanium dioxide.
The base layer of films of the present invention may, if desired, contain one or more additives which affect the physical properties of the films, for example migratory slip and/or antistatic agents.
In addition to the base layer and an outer layer of the blend of a polyether block amide with polypropylene and polybutene-1, films of the present invention can include a further outer layer of a blend of a polyether block amide with polypropylene and polybutene-1, the composition of the further layer being the same as or different from that of the other outer layer. However, other heat sealable materials can be used to form further heat sealable layers, for example olefin copolymers and terpolymers, and blends of two or more thereof. Examples of co-and terpolymers which can be used include polymers containing units derived from at least two of ethylene, propylene, butene-1, and higher alpha-olefins.
Films of the present invention can also include one or more intermediate layers between the base layer and the outer layer of the blend of a polyether block amide with polypropylene and polybutene-1. Such layers are preferably formed from at least one polyolefin, and more particularly from propylene polymers, for example propylene homopolymers or propylene copolymers containing units derived from small amounts of one or more other alkene, for example ethylene or butene-1.
If desired, intermediate layers of films of the present invention can include a pigment and/or a voiding agent, for example as proposed for the base layer.
Either or both of the outer surfaces of films of the present invention can be treated to increase their respective surface energies, for example using corona discharge, flame or plasma treatment.
Films in accordance with the present invention can be of a variety of thicknesses. However, outer layer or layers of the blends of a polyether block amide with polypropylene and polybutene-1 will usually have thicknesses of from 0.5 to 2 &mgr;m, a preferred range being from 0.7 to 1.5 &mgr;m.
The base layer will usually form the majority of the thickness of films of the present invention even when one or more intermediate layers are present, the thicknesses of such intermediate layers usually being substantially that required to provide a particular effect, for example increased gloss to an outer layer thereon or increased opacity when the base layer is voided. Films in accordance with the present invention can, for example, be as thin as 20 &mgr;m or less, for example for packaging applications, and they can be 50 &mgr;m or more thick, for example for labels.
Films in accordance with the present invention can be prepared by known methods, for example by coextrusion of layers of melts of the base layer, the blend of the polyether block amide with polypropylene and polybutene-1, and any other layers which are to be present in the final films. The films can be merely cast, but they are preferably oriented in at least one direction, biaxial orientation being particularly preferred. When films in accordance with the present invention are biaxially oriented, this can be effected simultaneously, for example in the so-called bubble process, or sequentially, for example using heated rollers in one direction followed by a stenter oven to effect stretching in the transverse direction. Sequential stretching will usually be used when it is desired to produce films which include at least one layer which is voided.


REFERENCES:
patent: 5482780 (1996-01-01), Wilkie et al.
patent: 6045919 (2000-04-01), Alex et al.
patent: 4432777 (1994-09-01), None
patent: WO91/17211 (1991-11-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymeric films does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymeric films, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymeric films will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2579080

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.