Polymeric devices including optical waveguide laser and...

Optical waveguides – Having nonlinear property

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S010000, C385S147000

Reexamination Certificate

active

06665479

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention pertains novel polymeric devices that can be employed inter alia as optical lasers or optical amplifiers. The invention further provides novel methods of manufacturing the devices, and novel materials for such manufacture. The devices optionally can comprise a single layer, and alternately, preferably include a plurality of layers which each comprise one or more laser(s) and/or amplifier(s) comprised of optical nonlinear second-order polymers (including polymer blends) which exhibit electroluminescence.
BACKGROUND OF THE INVENTION
As the demand for internet access grows exponentially, the demand for cheaper components increases accordingly. The rise in demand is driving the industry and technology towards an “all optical” solution. One of the untapped areas is the use of advanced optical polymers and organic material to produce cheaper components (Montgomery et al., “Higher bandwidth demands lower fiber-optic component costs”,
Lightwave,
100 (February 1999)). An example of a potentially large market for this technology is the transmission of optical signals directly into the homes of internet clients. The problems and cost associated with bringing glass fiber to desktops makes it uneconomical to do so at this time. The materials with the most promise for this purpose are polymer optical fibers and polymer-based components which can be mass produced cheaply and handled easily. Many such components have been developed and are being considered for use in the optical communications industry.
Polymer light-emitting diodes which were a mere curiosity up until the early 90s are now a market reality for display technologies (see, e.g., Lieberman, “Organic LEDs ramp for low-cost displays”,
Electronic Engineering Times,
59 (Mar. 29, 1999); Jabbour et al., “Aluminum composite cathodes”,
Optics and Photonics News,
24-27 (April 1999)). At the same time, nonlinear optical polymers are being investigated (e.g., as described in PCT International Applications WO 01/06305 and WO 01/06240) to develop optical integrated circuits (OICs) made of polymers (Jenekhe et al., Eds., ACS Symposium Series 672, “Photonics and Optoelectronic Polymers”, (1997)). To fulfill this objective, other necessary components are organic laser sources, amplifiers, and detectors, to name but a few.
In general, all integrated optical circuits introduce a signal loss. One of the main criticisms of polymer waveguides and components is their inherent higher optical loss in comparison with their silicon/germanium based counterparts, which means that the former require more frequent amplification of the signals. Accordingly, there is a need for an integrated optical amplifier that makes optical amplification possible within OICs. Furthermore, the demand for bandwidth is driving service to put as many as 80 channels in the range of the erbium C-band fiber amplifier. Future deployments may exceed 256 channels, which will require wider bandwidth optical amplifiers.
Erbium-doped fiber amplifiers (EDFAs) are considered the enabling technology for both long haul telecommunications and metropolitan networks (Chua et al., “Micro-optic integrated components improve optical amplifiers”,
Lightwave,
78 (February 1999)). However these EDFAs have a range that covers the fiber's third transmission window at 1550 nm (C-band). Optical signal amplification currently is solely based on erbium-doped fibers where erbium is the active element with emissions in the 1.5 &mgr;m range with a 35 nm window (1528-1563 nm). This window is particularly popular in the telecommunication industry for long distance transmissions because of the use of EDFAs. Consequently, all long haul telecommunication transmissions are densely squeezed into closely-spaced channels within this band which causes cross-talk problems. Meanwhile there are three more untapped bands available in optical fiber at 1.3 &mgr;m, 1.45 &mgr;m, and 1.6 &mgr;m. The present lack of suitable amplifiers for these bands renders them unusable for long distance communications for the time being. Alternative active materials are thus necessary to break away from this limitation and provide amplification over the whole range of the available channels.
Currently the research activity in the organic light emitting diode (OLED) area is targeting the “optical display” market. During the past decade there has been tremendous progress in this field and products such as OLED displays have begun to reach the market with brightness and efficiency that exceed those of current liquid crystal displays (LCDs). This technology is expected to win a significant share of the display market. Another less visible effort which is growing at a steady pace is the development of advanced polymeric material for nonlinear optics and opto-electronics. Like inorganic silicon-based opto-electronics, the organic-based opto-electronics are capable of producing the necessary components that enable it to enter the race for integrated optical circuitry. Basic components such as optical waveguides, modulators, optical switches, splitters, and the like already have been manufactured with some success. Other critical components such as organic laser sources, optical amplifiers and detectors will need to be developed further.
Thus, the present invention attempts to meet some of these needs in the industry by providing, among other things an optical laser, and an optical amplifier, preferably with organic light emitting diodes. The optical devices according to the invention conceivably can be manufactured easily due to novel means for their production and their novel use of materials, as further described herein. Furthermore, the laser and optical amplifier can be constructed in arrays, and optionally can be stacked (e.g., when present individually, or in arrays, etc.). Uses of the devices include but are not limited to communication and information systems, optical switching, computing, and display panels. The devices described herein should facilitate deployment of all-optical communications networks. These and other objects and advantages of the present invention, as well as additional inventive features, will be apparent from the following description of the invention provided herein.
BRIEF SUMMARY OF THE INVENTION
The present invention pertains to a family of novel polymeric devices including an optical laser and optical amplifier, and to novel methods and materials for their manufacture. The devices of the invention preferably each comprise optical nonlinear second-order polymers (including polymer blends) which exhibit electroluminescence. The devices can be present in a single layer (e.g., either singly, or in an array including a side-by-side arrangement), and optionally comprise a plurality of layers, such as at least two layers, preferably which are stacked (e.g., either a stack of single devices, or a stack of arrayed devices). Of course, the devices of the present invention optionally can be fabricated attached to other devices (optical or non-optical), or elements of devices (e.g., electrodes and the like).
Additional features and variations of the invention will be apparent to those skilled in the art from the entirety of this application, including the detailed description, and all such features are intended as aspects of the invention. Likewise, features of the invention described herein can be recombined into additional embodiments that also are intended as aspects of the inventions irrespective of whether the combination of features is specifically mentioned as an aspect or embodiment of the invention. Also, only such limitations which are described herein as critical to the invention should be viewed as such; variations of the invention lacking limitations which have not been described herein as critical are intended as aspects of the invention. In addition to the foregoing, the invention includes, as an additional aspect, all embodiments of the invention narrower in scope in any way than the variations specifically described.


REFERENCES:
patent: 4

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymeric devices including optical waveguide laser and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymeric devices including optical waveguide laser and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymeric devices including optical waveguide laser and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3158100

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.