Surgery – Respiratory method or device – Combined with or convertible to a nonrespiratory device – or...
Reexamination Certificate
2000-06-13
2003-01-28
Lewis, Aaron J. (Department: 3761)
Surgery
Respiratory method or device
Combined with or convertible to a nonrespiratory device, or...
C128S205220
Reexamination Certificate
active
06510849
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed to a container system for pressurized fluids that is lightweight and more resistant to explosive rupturing than prior art containers and thus can be adapted into embodiments that are portable to provide ambulatory supplies of fluid under pressure.
BACKGROUND OF THE INVENTION
There are many applications for a portable supply of fluid under pressure. For example, SCUBA divers and firefighters use portable, pressurized oxygen supplies. Commercial aircraft employ emergency oxygen delivery systems that are used during sudden and unexpected cabin depressurization. Military aircraft typically require supplemental oxygen supply systems as well. Such systems are supplied by portable pressurized canisters. In the medical field, gas delivery systems are provided to administer medicinal gas, such as oxygen, to a patient undergoing respiratory therapy. Supplemental oxygen delivery systems are used by patients that benefit from receiving and breathing oxygen from an oxygen supply source to supplement atmospheric oxygen breathed by the patient. For such uses, a compact, portable supplemental oxygen delivery system is useful in a wide variety of contexts, including hospital, home care, and ambulatory settings.
High-pressure supplemental oxygen delivery systems typically include a cylinder or tank containing oxygen gas at a pressure of up to 3,000 psi. A pressure regulator is used in a high-pressure oxygen delivery system to “step down” the pressure of oxygen gas to a lower pressure (e.g., 20 to 50 psi) suitable for use in an oxygen delivery apparatus used by a person breathing the supplemental oxygen.
In supplemental oxygen delivery systems, and in other applications employing portable supplies of pressurized gas, containers used for the storage and use of compressed fluids, and particularly gases, generally take the form of cylindrical metal bottles that may be wound with reinforcing materials to withstand high fluid pressures. Such storage containers are expensive to manufacture, inherently heavy, bulky, inflexible, and prone to violent and explosive fragmentation upon rupture.
Container systems made from lightweight synthetic materials have been proposed. Scholley, in U.S. Pat. Nos. 4,932,403; 5,036,845; and 5,127,399, describes a flexible and portable container for compressed gases which comprises a series of elongated, substantially cylindrical chambers arranged in a parallel configuration and interconnected by narrow, bent conduits and attached to the back of a vest that can be worn by a person. The container includes a liner, which may be formed of a synthetic material such as nylon, polyethylene, polypropylene, polyurethane, tetrafluoroethylene, or polyester. The liner is covered with a high-strength reinforcing fiber, such as a high-strength braid or winding of a reinforcing material such as Kevlar® aramid fiber, and a protective coating of a material, such as polyurethane, covers the reinforcing fiber.
The design described in the Scholley patents suffers a number of shortcomings which makes it impractical for use as a container for fluids stored at the pressure levels typically seen in portable fluid delivery systems such as SCUBA gear, firefighter's oxygen systems, emergency oxygen systems, and medicinal oxygen systems. The elongated, generally cylindrical shape of the separate storage chambers does not provide an effective structure for containing highly-pressurized fluids. Moreover, the relatively large volume of the storage sections creates an unsafe system subject to possible violent rupture due to the kinetic energy of the relatively large volume of pressurized fluid stored in each chamber.
Accordingly, there is a need for improved container systems made of light weight polymeric material and which are robust and less susceptible to violent rupture.
SUMMARY OF THE INVENTION
In accordance with aspects of the present invention, a light weight, robust pressure vessel is provided by a container system for pressurized fluids. The container system comprises a pressure vessel having a plurality of hollow chambers, each having a substantially spherical or ellipsoidal shape and being formed from a polymeric material, a plurality of conduit sections formed from a polymeric material, each being positioned between adjacent ones of the plurality of hollow chambers to interconnect the plurality of hollow chambers, the inside width of the conduit sections being less than that of the chambers, and a reinforcing filament wrapped around the hollow chambers and the conduit sections. The container system further includes a fluid transfer control system attached to the pressure vessel and constructed and arranged to control flow of fluid into and out of the pressure vessel.
The polymeric construction of the pressure vessel is light weight and, together with the reinforcing filament, provides a strong and robust design. The ellipsoidal or spherical chambers interconnected by narrow conduits of smaller internal width than the chambers provides a storage system that is less susceptible to violent rupture due to near instantaneous release of a substantial volume of fluid under pressure.
Other objects, features, and characteristics of the present invention will become apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of the specification, and wherein like reference numerals designate corresponding parts in the various figures.
REFERENCES:
patent: 601591 (1898-03-01), Sherman
patent: 724129 (1903-03-01), Schrader
patent: 1778244 (1930-10-01), Cadden
patent: 2319024 (1943-05-01), Wehringer
patent: 2524052 (1950-10-01), Grant, Jr.
patent: 5632268 (1997-05-01), Ellis et al.
Izuchukwu John I.
Sanders Stan A.
Lewis Aaron J.
Mallinckrodt Inc.
Rothwell Figg Ernst & Manbeck
LandOfFree
Polymeric container system for pressurized fluids does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polymeric container system for pressurized fluids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymeric container system for pressurized fluids will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3065702