Polymer material with stable non-wetting surface

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S276000, C525S280000, C525S332300, C525S359100, C525S359600, C526S245000, C526S252000, C526S254000, C524S544000, C524S546000

Reexamination Certificate

active

06750296

ABSTRACT:

BACKGROUND OF THE INVENTION
Environmental concern and legislation regarding toxic metal-containing anti-fouling coatings, which may create an environmental hazard and potential for pollution, has stimulated research efforts into alternative non-toxic fouling methods. Currently, silicone and fluorine containing polymers are commonly used as low surface materials. However, most of them are susceptible to physical and chemical processes in water that compromise optimum surface properties. For example, one non-toxic anti-fouling material currently in use is elastomeric poly(dimethyl siloxane) which, depending on the formulation, is susceptible to physical and chemical processes in water that compromise optimum surface properties.
Fluorinated polymers are known and are used for providing low surface energy surfaces. Such surfaces have anti-stick, non-wetting, and low friction properties. For example, fluorinated ester side chain acrylic and methacrylic polymers are low surface energy coating materials that are commercially available. In addition, low surface energy fluorinated poly(amide urethane) block copolymers and other low surface energy polymers have been reported in the literature. See, e.g., Chapman, T. M., et al., Macromolecules, 28, 331-335 (1995); Chapman, T. M., et al., Macromolecules, 28, 2081-2085 (1995); Wynne, K. J., et al., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 36(1), 67-68 (1995); and Pike, J. K., et al., Chem. Mater., 8, 856-860 (1996). However, these polymers with fluorinated side chains do not have stable low surface energy properties when immersed in water, and over time in water the low surface energy properties are reduced due to movement of polar groups to the surface to change the polarity thereof (i.e., the polymers undergo surface reconstruction).
Semifluorinated side-groups have been successfully introduced onto a block copolymer to create new controlled surface energy polymers. See, e.g., Xiang, M.; Li, X.; Ober, C. K.; Char, K.; Genzer, J.; Sivaniah, E.; Kramer, E. J.; Fischer, D. A.
Macromolecules,
2000, 33, 6106; and Kang, S. H.; Ober, C. K.; Kramer, E. J.
Polym. Prepr.
2000, 41(2), 1521. The attachment of the per- and semifluorinated side chains to the polymeric backbones have provided stable, low energy surfaces that resist fouling by marine organisms. Kobayashi, H.; Owen, M. J.
Trends in Polymer Science,
1995, 3(10), 330. However, additional non-wetting, low energy materials having compatible segments are needed. The material is preferably stable (e.g., does not undergo surface reconstruction to an appreciable degree) over extended periods of time in a polar environment. The material preferably provides acceptable adhesion to a variety of surfaces and preferably has the mechanical properties needed to prevent marine biofouling typically encountered with silicone elastomers. In addition to the surface resisting biofouling, the surface of the material preferably resists heterogeneous nucleation of ice and the adsorption of proteins. In addition, the surface of the material is preferably biocompatible.
SUMMARY OF THE INVENTION
The present invention provides block copolymers with semifluorinated LC side groups (single or monodendron groups). The block copolymers can be blended with a thermoplastic elastomer block copolymer, e.g., styrene-ethylene/butylene-styrene (SEBS) to provide a surface active block copolymer (SABC). The surface active block copolymer (SABC) has a surface energy of about 8 mN/m to about 20 mN/m and a water contact angle of about 100 degrees to about 150 degrees. The surface active block copolymer (SABC) is useful in the manufacture of anti-fouling coatings and low energy surface materials. The surface active block copolymer (SABC) is non-toxic, does not undergo surface reconstruction when immersed in a polar environment, possesses anti-stick properties, possesses non-wetting properties, possesses low friction properties, resists biofouling by marine organisms, exhibits minimal protein adsorption, resists heterogeneous nucleation of ice, and/or is biocompatible.
The present invention provides a compound of formula (I):
wherein
R
1
is hydrogen and R
2
is methyl or R
1
is methyl and R
2
is hydrogen;
x is about 100 to about 5,000;
z is about 20 to about 1,000;
l is about 20 to about 1,000;
t is about 40 to about 2,000; and
R is a compound of formula (II) or (III):
wherein
m is 0 to about 15; and
q is about 5 to about 15.
Specifically, x can be about 500 to about 1,000; z can be about 200 to about 500; l can be about 200 to about 500; t can be about 200 to about 1,000; m can be about 4 to about 10; and q can be about 6 to about 12. The compound of formula (I) can have an average molecular weight of about 10,000 to about 500,000 or about 75,000 to about 150,000. The compound of formula (I) can be blended with a thermoplastic elastomer block copolymer, e.g., styrene-ethylene/butylene-styrene (SEBS).
The present invention also provides a compound of formula (IV):
wherein
a is about 200 to about 5,000;
d is about 100 to about 500;
e is about 100 to about 500;
g is about 200 to about 1,000;
R
3
is a compound of formula (V):
—COCH
2
O(CH
2
CH
2
O)
j
CH
3
(V)
wherein
j is about 1 to about 15.
Specifically, a can be about 150 to about 3,000; d can be about 100 to about 300; e can be about 100 to about 300; g can be about 200 to about 600; and j can be about 6 to about 8. The compound of formula (IV) can have an average molecular weight of about 10,000 to about 500,000 or about 50,000 to about 150,000. The compound of formula (IV) can be blended with a thermoplastic elastomer block copolymer, e.g., styrene-ethylene/butylene-styrene (SEBS).
The present invention also provides a surface active block copolymer (SABC) comprising a thermoplastic elastomer block copolymer and a diblock copolymer, wherein the diblock copolymer comprises semifluorinated monodendron side chains. The thermoplastic elastomer block copolymer can be styrene-ethylene/butylene-styrene (SEBS). The surface active block copolymer (SABC) can have a surface energy of about 8 mN/m to about 20 mN/m. The surface active block copolymer (SABC) can have a water contact angle of about 100 degrees to about 150 degrees. The thermoplastic elastomer block copolymer can be present in about 1 wt. % to about 20 wt. % of the surface active block copolymer (SABC). The diblock copolymer can be present in about 2 wt. % to about 5 wt. % of the surface active block copolymer (SABC). The diblock copolymer can be a compound of formula (I). The surface active block copolymer (SABC) can be useful in the manufacture of an anti-fouling coating, a low energy surface material, or a combination thereof. The surface active block copolymer (SABC) can have suitable physical properties, e.g., non-toxic, does not undergo surface reconstruction when immersed in a polar environment, possesses anti-stick properties, possesses non-wetting properties, possesses low friction properties, resists biofouling by marine organisms, exhibits minimal protein adsorption, resists heterogeneous nucleation of ice, is biocompatible, or any combination thereof.
The present invention also provides surface active block copolymer (SABC) comprising a thermoplastic elastomer block copolymer and a diblock copolymer, wherein the diblock copolymer comprises oligoethylene glycol side chains. The thermoplastic elastomer block copolymer can be styrene-ethylene/butylene-styrene (SEBS). The surface active block copolymer (SABC) can have a surface energy of about 40 mN/m to about 60 mN/m. The surface active block copolymer (SABC) can have a water contact angle of about 25 degrees to about 60 degrees. The thermoplastic elastomer block copolymer can be present in about 80 wt. % to about 99 wt. % of the surface active block copolymer (SABC). The diblock copolymer can be present in about 2 wt. % to about 5 wt. % of the surface active block copolymer (SABC). The diblock copolymer can be a compound of formula (IV). The surface active block copolymer (SABC) can be useful in the manufacture of an anti-fouling coating, a low en

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymer material with stable non-wetting surface does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymer material with stable non-wetting surface, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymer material with stable non-wetting surface will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3317685

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.