Polymer grafting by polysaccharide synthases

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing compound containing saccharide radical

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S072000, C435S101000

Reexamination Certificate

active

06444447

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND
1. Field of the Invention
The present invention relates to methodology for polymer grafting by a polysaccharide synthase and, more particularly, polymer grafting using the hyaluronate synthase from
Pasteurella multocida
. The present invention also relates to coatings for biomaterials wherein the coatings provide protective properties to the biomaterial and/or act as a bioadhesive. Such coatings could be applied to electrical devices, sensors, catheters and any device which may be contemplated for use within a mammal. The present invention further relates to drug delivery matrices which are biocompatible and may comprise combinations of a biomaterial or a bioadhesive and a medicament or a medicament-containing liposome. The biomaterial and/or bioadhesive is a hyaluronic acid polymer produced by a hyaluronate synthase from
Pasteurella multocida
. The present invention also relates to the creation of chimeric molecules containing hyaluronic acid or hyaluronic acid-like chains or glycosaminoglycan chains attached to various compounds and especially carbohydrates or hydroxyl containing substances.
2. Description of the Related Art
Polysaccharides are large carbohydrate molecules composed from about 25 sugar units to thousands of sugar units. Animals, plants, fungi and bacteria produce an enormous variety of polysaccharide structures which are involved in numerous important biological functions such as structural elements, energy storage, and cellular interaction mediation. Often, the polysaccharide's biological function is due to the interaction of the polysaccharide with proteins such as receptors and growth factors. The glycosaminoglycan class of polysaccharides, which includes heparin, chondroitan, and hyaluronic acid, play major roles in determining cellular behavior (e.g. migration, adhesion) as well as the rate of cell proliferation in mammals. These polysaccharides are, therefore, essential for correct formation and maintenance of organs of the human body.
Several species of pathogenic bacteria and fungi also take advantage of the polysaccharide's role in cellular communication. These pathogenic microbes form polysaccharide surface coatings or capsules that are identical or chemically similar to host molecules. For instance, Group A & C Streptococcus and Type A
Pasteturella multocida
produce authentic hyaluronic acid capsules and pathogenic
Escherichia coli
are known to make capsules composed of polymers very similar to chondroitan and heparin. The pathogenic microbes form the polysaccharide surface coatings or capsules because such a coating is nonimmunogenic and protects the bacteria from host defenses thereby providing the equivalent of molecular camouflage.
Enzymes alternatively called synthases, synthetases, or transferases, catalyze the polymerization of polysaccharides found in living organisms. Many of the known enzymes also polymerize activated sugar nucleotides. The most prevalent sugar donors contain UDP but ADP, GDP, and CMP are also used depending on (1) the particular sugar to be transferred and (2) the organism. Many types of polysaccharides are found at or outside of, the cell surface. Accordingly, most of the synthase activity is typically associated with either the plasma membrane on the cell periphery or the Golgi apparatus membranes that are involved in secretion. In general, these membrane-bound synthase proteins are difficult to manipulate by typical procedures and only a few enzymes have been identified after biochemical purification.
A larger number of synthases have been cloned and sequenced at the nucleotide level using ‘reverse genetic’ approaches in which the gene or the complimentary DNA (cDNA) was obtained before the protein was characterized. Despite this sequence information, the molecular details concerning the three-dimensional native structures, the active sites, and the mechanisms of catalytic action of the polysaccharide synthases, in general, are very limited or absent. For example, the catalytic mechanism for glycogen synthesis is not yet known in detail even though the enzyme was discovered decades ago. In another example, it is still a matter of debate whether the enzymes that produce heteropolysaccharides utilize one UDP-sugar binding site to transfer both precursors, or alternatively, if there exists two dedicated regions for each substrate.
A wide variety of polysaccharides are commercially harvested from many sources, such as xanthan from bacteria, carrageenans from seaweed, and gums from trees. This substantial industry supplies thousands of tons of these raw materials for a multitude of consumer products ranging from ice cream desserts to skin cream cosmetics. Vertebrate tissues and pathogenic bacteria are the sources of more exotic polysaceharides utilized in the medical field as surgical aids, vaccines. and anticoagulants. For example, two glycosaminoglycan polysaccharides, heparin from pig intestinal mucosa and hyaluronic acid from rooster combs, are employed in several applications including clot prevention and eye surgery, respectively. Polysaccharides extracted from bacterial capsules (e.g. various
Streptococcus pneumoniae
strains) are utilized to vaccinate both children and adults against disease with varying levels of success. However, for the most part, one must use the existing structures found in the raw materials as obtained from nature. In many of the older industrial processes, chemical modification (e.g. hydrolysis, sulfation, deacetylation) is used to alter the structure and properties of the native polysaccharide. However, the synthetic control and the reproducibility of large-scale reactions are not always successful.
Some of the current methods for designing and constructing carbohydrate polymers in vitro utilize: (i) difficult, multistep sugar chemistry, or (ii) reactions driven by transferase enzymes involved in biosynthesis, or (iii) reactions harnessing carbohydrate degrading enzymes catalyzing transglycosylation. The latter two methods are restricted by the specificity and the properties of the available naturally occurring enzymes. Many of these enzymes are neither particularly abundant nor stable but are almost always expensive. Overall, the procedures currently employed yield polymers containing between 2 and about 12 sugars. Unfortunately, many of the physical and biological properties of polysaccharides do not become apparent until the polymer contains 25, 100, or even thousands of monomers.
As stated above, polysaccharides are the most abundant biomaterials on earth, yet many of the molecular details of their biosynthesis and function are not clear. Hyaluronic acid or “HA” is a linear polysaccharide of the glycosaminoglycan class and is composed of up to thousands of &bgr;(1,4)GlcUA-&bgr;(1,3)GlcNAc repeats. In vertebrates. HA is a major structural element of the extracellular matrix and plays roles in adhesion and recognition. HA has a high negative charge density and numerous hydroxyl groups, therefore, the molecule assumes an extended and hydrated conformation in solution. The viscoelastic properties of cartilage and synovial fluid are, in part, the result of the physical properties of the HA polysaccharide. HA also interacts with proteins such as CD44, RHAMM, and fibrinogen thereby influencing many natural processes such as an(liogenesis, cancer, cell motility, wound healing, and cell adhesion.
There are numerous medical applications of HA. For example, HA has been widely used as a viscoelastic replacement for the vitreous humor of the eye in ophthalmic surgery during implantation of intraocular lenses in cataract patients. HA injection directly into joints is also used to alleviate pain associated with arthritis. Chemically cross-linked gels and films are also utilized to prevent deleterious adhesions after abdominal surgery. Other researchers using other methods have demonstrated that adsorbed HA coatings also improve the biocompatibility of medical devices such as catheters and senso

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymer grafting by polysaccharide synthases does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymer grafting by polysaccharide synthases, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymer grafting by polysaccharide synthases will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2853488

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.