Polymer electrolyte composite for driving an electrolytic...

Electricity: electrical systems and devices – Electrolytic systems or devices – Solid electrolytic capacitor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S062200

Reexamination Certificate

active

06765785

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a polymer electrolyte composite for driving an electrolytic capacitor, an electrolytic capacitor using the same, and a method of making the electrolytic capacitor.
An electrolytic capacitor has such a structure that a cathode and an anode having a dielectric oxide film formed thereon by anodic oxidation sandwich an electrolyte. Kinds of electrolytes can be categorized into three types: ion conductive type using a liquid electrolyte; ion conductive type using a solid electrolyte; and electron conductive type using a solid electrolyte.
An electrolyte of ion conductive type using a liquid electrolyte has an advantage in that a high voltage for anodic oxidation can be applied between the anode and the cathode of the electrolytic capacitor when such a high voltage application is needed to reform or recover the dielectric oxide film having deep defects or unformed places. Namely, it is capable to apply a high forming voltage for the purpose of reforming the dielectric oxide film, thereby to be able to easily recover defects therein. Here, the capability of application of a high reforming voltage means that sparks are not generated at lower voltages voltages, i.e. that sparking voltage or minimum voltage for spark generation is high.
However, such an electrolyte of ion conductive type using a liquid electrolyte has drawbacks as well. In order to retain a liquid electrolyte between an anode and a cathode, a separator is required, which should be able to be sufficiently filled with the liquid electrolyte and which sufficiently separates the anode and the cathode. In order to meet the requirement, it becomes necessary to use a separator material, such as paper and nonwoven fabric, having a sufficiently high weighting, i.e. product of density and thickness. Although a liquid electrolyte itself has a comparatively high ionic conductivity and a comparatively low electric resistance which is usually expressed by equivalent series resistance (ESR), the combined body of the separator and the liquid electrolyte gets to have a high electric resistance because of the high weighting of the separator. In other words, the total resistance loss of a resultant electrolytic capacitor becomes large due to the separator although the resistance loss by the liquid electrolyte itself can be made comparatively small. Furthermore, since the liquid electrolyte is of liquid by definition, it has drawbacks as to e.g. liquid leakage and difficulties in mounting to electrical devices and machining.
For the above reasons, it has been studied to solidify liquid electrolytes. Solid electrolytes do not have drawbacks caused by the use of liquid. In one example of a solid electrolyte having an electronic conductivity, polypyrrole is used as electrolyte in place of the liquid electrolyte, and a porous resin such as polypropylene and polyethylene is used as separator. Since it uses electronic conductivity, it has a low electric resistance, contributing to a small resistance loss of the resultant electrolytic capacitors. However, in the case of the solid electrolytes of electron conductive type, it is difficult to sufficiently recover the dielectric oxide film by applying a high reforming voltage even though the dielectric oxide film has defects therein. This is because in the case of such type, sparks are likely to be generated with an application of a comparatively low reforming voltage. Namely, such solid electrolytes of electron conductive type have little function of recovering the dielectric oxide film.
On the other hand, solid electrolytes of ion conductive type can be categorized into inorganic systems and polymer systems. The inorganic systems have drawbacks in that they are heavy, inflexible and difficult to form, although they have an advantage in their high ionic conductivities.
Solid polymer systems, i.e. ion conductive polymers, are drawing attention because they are superior in their mechanical properties in e.g. lightness in weight, flexibility and formability or easiness of manufacturing, although they have much lower ionic conductivities.
Examples of ion conductive polymers having been reported are: mixture of polyethylene oxide (PEO) with a lithium salt, having an ionic conductivity of about 10
−4
S/cm at 100° C. (see “Polymer”, 14, 586 (1973)); mixture of diisocyanate crosslinked polymer of triol type polyethylene oxide with a metal salt, having an ionic conductivity of 10
−5
S/cm at 30° C. (See Japanese Laid-open Patent Publication Sho 62-48716); copolymer of oligooxyethylene polymethacrylate and an alkaline metal salt of methacrylic acid in which pair ions are fixed, having an ionic conductivity of 10
−7
S/cm at room temperature (see “Polymer Reprints Japan”, 35, 583 (1986)); and mixture of monofunctional and multifunctional acryloyl-modified polyalkylene oxides with an alkaline metal and/or an alkaline earth metal, having an ionic conductivity of 10
−3
S/cm at 20° C. (See Japanese Laid-open Patent Publication Hei 8-295711). Further, an example of ion conductive polymers having been actually used for electrolytic capacitors is composed of a solvent and an electrolyte salt together with a thermally metamorphosed polymer and/or a cellulose derivative, having an ionic conductivity of 10
−3
S/cm at room temperature (See Japanese Laid-open Patent Publication Hei 5-55088), wherein the solvent contains a polyhydric alcohol compound having a molecular weight of 200 or lower, and the thermally metamorphosed polymer contains albumen protein and/or &bgr;-1,3 glucan.
However, some of the above described ion conductive polymers have too low ionic conductivities to cause too large resistance losses, so that electrolytic capacitors using such ion conductive polymers cannot have sufficient performances. Other ones of the above described ion conductive polymers have too low heat resistances, though they may have ionic conductivities similar to those of liquid electrolytes. Furthermore, the existence of metal salts in the above described ion conductive polymers is likely to cause short-circuiting of the resultant electrolytic capacitors when they are used at a high temperature, and makes it difficult to obtain satisfactory characteristics.
BRIEF SUMMARY OF THE INVENTION
It is an object of the present invention to solve the problems of such prior art as described above, and to provide a polymer electrolyte composite for driving an electrolytic capacitor, in which the polymer electrolyte composite has a high ionic conductivity together with a high heat resistance, and does not react with electrode foils such as aluminum, and moreover is superior in the formability or easiness of manufacturing, and long life.
It is another object of the present invention to provide an electrolytic capacitor using the polymer electrolyte composite.
The polymer electrolyte composite, for driving an electrolytic capacitor, according to the present invention is a composite body comprising an electrolyte and an acrylic polymer containing a copolymer of acrylic derivative. The electrolyte comprises a polar solvent and a solute comprising at least one of inorganic acids, organic acids and salts of such acids. The copolymer of acrylic derivative is a polymer of: a first monomer of at least one of a group of monofunctional monomers of acrylic derivatives each having at least one hydroxyl group at a terminal thereof and a polymerizable unsaturated double bond; and a second monomer of at least one of a group of multifunctional monomers of acrylic derivatives each having plural polymerizable unsaturated double bonds. Here, it is to be noted that the hydroxyl group at the terminals of the acrylic derivatives include not only hydroxyl group in a narrow sense, but also hydroxyl group in a wide sense such as carboxyl group, phosphate group and dihydroxyl group, each having a hydroxyl group at a terminal thereof.
It is preferred that the above described copolymer of acrylic derivative constitute a copolymer matrix, and that the above described electrolyte be

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymer electrolyte composite for driving an electrolytic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymer electrolyte composite for driving an electrolytic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymer electrolyte composite for driving an electrolytic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3219357

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.