Surgery – Instruments – Internal pressure applicator
Reexamination Certificate
1999-06-04
2001-08-28
Recla, Henry J. (Department: 3731)
Surgery
Instruments
Internal pressure applicator
C606S191000
Reexamination Certificate
active
06280457
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a medical device for forming an embolism within the vasculature of a patient. More particularly, it concerns an occlusion device comprising an inner core covered with a polymer. The device encourages cellular attachment and growth while maintaining favorable handling, deployment and visualization characteristics.
BACKGROUND
Vaso-occlusive devices are surgical implements that are placed within open sites in the vasculature of the human body. The devices are introduced typically via a catheter to the site within the vasculature that is to be closed. That site may be within the lumen of a blood vessel or perhaps within an aneurysm stemming from a blood vessel.
There are a variety of materials and devices which have been used to create such emboli. For instance, injectable fluids such as microfibrillar collagen, various polymeric foams and beads have also been used. Polymeric resins, particularly cyanoacrylate resins, have been used as injectable vaso-occlusive materials. Both the injectable gel and resin materials are typically mixed with a radio-opaque material to allow accurate siting of the resulted material. There are significant risks involved in use of a cyanoacrylates, because of the potential for misplacement. Such a misplacement would create emboli in undesired areas. Cyanoacrylate resins or glues are somewhat difficult, if not impossible, to retrieve once they are improperly placed.
Other available vaso-occlusive devices include mechanical vaso-occlusive devices. Examples of such devices are helically wound coils, ribbons and braids. Various shaped coils have been described. For example, U.S. Pat. No. 5,624,461 to Mariant describes a three-dimensional in-filling vaso-occlusive coil. U.S. Pat. No. 5,639,277 to Mariant et al. describe embolic coils having twisted helical shapes and U.S. Pat. No. 5,649,949 to Wallace et al. describes variable cross-section conical vaso-occlusive coils. A random shape is described, as well. U.S. Pat. No. 5,645,082 to Sung et al., describes methods for treating arrhythmia using coils which assume random configurations upon deployment from a catheter. U.S. Pat. No. 5,527,338 to Purdy describes a multi-element intravascular occlusion device in which shaped coils may be employed. Substantially spherical shaped occlusive devices are described in U.S. Pat. No. 5,423,829 to Pham and Doan. U.S. Pat. No. 5,690,666 entitled “Ultrasoft Embolization Coils with Fluid-Like Properties” by Berenstein et al., describes a coil having little or no shape after introduction into the vascular space.
There are a variety of ways of discharging shaped coils and linear coils into the human vasculature. In addition to those patents which suggest the physical pushing of a coil out into the vasculature (e.g., U.S. Pat. No. 4,994,069 to Ritchart et al.), there are a number of other ways to release the coil at a specifically chosen time and site. U.S. Pat. No. 5,354,295 and its parent, U.S. Pat. No. 5,122,136, both to Guglielmi et al., describe an electrolytically detachable embolic device.
A variety of mechanically detachable devices are also known. For instance, U.S. Pat. No. 5,234,437, to Sepetka, shows a method of unscrewing a helically wound coil from a pusher having interlocking surfaces. U.S. Pat. No. 5,250,071, to Palermo, shows an embolic coil assembly using interlocking clasps mounted both on the pusher and on the embolic coil. U.S. Pat. No. 5,261,916, to Engelson, shows a detachable pusher-vaso-occlusive coil assembly having an interlocking ball and keyway-type coupling. U.S. Pat. No. 5,304,195, to Twyford et al., shows a pusher-vaso-occlusive coil assembly having an affixed, proximally extending wire carrying a ball on its proximal end and a pusher having a similar end. The two ends are interlocked and disengage when expelled from the distal tip of the catheter. U.S. Pat. No. 5,312,415, to Palermo, also shows a method for discharging numerous coils from a single pusher by use of a guidewire which has a section capable of interconnecting with the interior of the helically wound coil. U.S. Pat. No. 5,350,397, to Palermo et al., shows a pusher having a throat at its distal end and a pusher through its axis. The pusher sheath will hold onto the end of an embolic coil and will then be released upon pushing the axially placed pusher wire against the member found on the proximal end of the vaso-occlusive coil.
In addition, several patents describe deployable vaso-occlusive devices that have added materials designed to increase their thrombogenicity. For example, fibered vaso-occlusive devices have been described at a variety of patents assigned to Target Therapeutics, Inc., of Fremont, Calif. Such vaso-occlusive coils having attached fibers is shown in U.S. Pat. Nos. 5,226,911 and 5,304,194, both to Chee et al. Another vaso-occlusive coil having attached fibrous materials is found in U.S. Pat. No. 5,382,259, to Phelps et al. The Phelps et al. patent describes a vaso-occlusive coil which is covered with a polymeric fibrous braid on its exterior surface.
In other attempts to increase thrombogenesis, vaso-occlusive coils have also been treated with variety of substances. For instance, U.S. Pat. No. 4,994,069, to Ritchart et al., describes a vaso-occlusive coil that assumes a linear helical configuration when stretched and a folded, convoluted configuration when relaxed. The stretched condition is used in placing the coil at the desired site (by its passage through the catheter) and the coil assumes a relaxed configuration—which is better suited to occlude the vessel—once the device is so placed. Ritchart et al. describes a variety of shapes. The secondary shapes of the disclosed coils include “flower” shapes and double vortices. The coils may be coated with agarose, collagen or sugar.
U.S. Pat. No. 5,669,931 to Kupiecki et al. discloses coils that may be filed or coated with thrombotic or medicinal material. U.S. Pat. No. 5,749,894 to Engleson discloses an aneurysm closure method which involves a reformable polymer.
U.S. Pat. No. 5,536,274 to Neuss shows a spiral implant which may assume a variety of secondary shapes. Some complex shapes can be formed by interconnecting two or more of the spiral-shaped implants. To promote blood coagulation, the implants may be coated with metal particles, silicone, PTFE, rubber lattices, or polymers.
None of the documents described above suggest a device such as that claimed herein.
SUMMARY OF THE INVENTION
This invention relates to devices and to methods for making vaso-occlusive devices typically at least partially covered by a polymeric fiber. The vaso-occlusive device often will have a primary shape of a helical coil. In particular, one variation of the inventive device is a simple wire wrapped with at least one polymeric fiber. The term polymeric fiber used throughout this invention, refers to, for example, a mono-filament, such as a single filament, or a multi-filament construction, such as a plurality of single filaments wound, braided, or otherwise joined together. The wire is then formed into a primary shape of a helical coil. The helical coil may be, for example, elongated or substantially spherical. Also, the pitch of the polymeric fiber on the wire may range from, for example, open to closed, depending upon the desired density of polymer desired. The pitch of the fiber may also be consistent or vary along the wire.
Another variation of the inventive device is a wire formed into a primary shape of a helical coil with at least one polymeric fiber that is wound or braided about the helical coil, thus covering the coil. The helical coil may be, for example, elongated or substantially spherical. Also, the pitch of the polymeric fiber on the coil may range from, for example, open to closed, depending upon the desired distal density of polymer desired. For example, a fiber with an open pitch will have spaces between each turn of the fiber, while a fiber with a closed pitch will not have spaces between each turn. The proximal pitch of the polymeric fiber may also be consistent or v
Hui Delilah Yin
Wallace Michael P.
Morrison & Foerster / LLP
Ngo Lien
Recla Henry J.
Sci-Med Life Systems, Inc.
LandOfFree
Polymer covered vaso-occlusive devices and methods of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polymer covered vaso-occlusive devices and methods of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymer covered vaso-occlusive devices and methods of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2511243