Polymer-coated stents, processes for producing the same and...

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Having plural layers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S001100, C623S001420

Reexamination Certificate

active

06712846

ABSTRACT:

The invention relates to stents with polymer coating, processes for their production and their use for preventing restenosis.
THE PRIOR ART
Stents are prior art (Pschyrembel, Klinisches Wörterbuch [Clinical Dictionary], 257
th
edition, W. de Gruyter Publisher). Stents are endoprostheses that make it possible to keep duct-like structures open in the bodies of humans or animals (e.g., vessel, esophageal, tracheal, bile duct stent). They are used as palliative measures for constrictions by closure (e.g., atherosclerosis) or by external pressure (e.g., from tumors). Radioactive stents are used for restenosis prevention, for example, after surgical intervention in the vessels or interventional radiological procedures (e.g., balloon angioplasty).
The surface of the previously described stents is either metallic and consists, e.g., of stainless steel, nitinol or gold, or is covered with a layer of a polymer, e.g., with polyurethane, polylactic acid, polyglycolic acid or copolymers.
Stents are also known that are coated with a polymer layer that contains a therapeutic agent and gradually releases it. Such a stent is described, e.g., in patent application WO 91/12779.
In European patent application EP 0 819 446 A2, a stent coated with a chelating agent is described. The stent is dipped in a solution with a radioisotope before implantation, so that a radioactive implant is achieved. But in contrast to other therapeutic agents, the radioisotope is not to reach the blood stream. But in the stents proposed in this application, the selected chelating agents all have poor properties as complexing agents, so that it is not guaranteed that the radioisotope remains bonded to the stent.
Now the problem exists that the stent, for the body, is a foreign object and intolerance reactions occur. Further, it must be guaranteed for a radioactive implant that the radioactive isotope is permanently bonded to the surface and will not come off in vivo.
The object of this invention is thus to make available stents that are tolerated better than conventional stents and to whose surface therapeutic agents are bonded. If radioisotopes are used as therapeutic agents, then the radioactive isotopes must be permanently bonded to the stent surface so that the radioactive ions do not come off in vivo.
This object is achieved by the stents described below as they are characterized in the claims.
DESCRIPTION OF THE INVENTION
The object outlined above is achieved according to the invention in that the surface of the stent is coated with a polymer to which hydrophilic substances are coupled that additionally can represent or contain a therapeutic agent.
The device according to the invention thus consists of a base stent element to which a polymer is applied that carries hydrophilic substances having a particular affinity for therapeutic agents.
Commercially available implants can be used as base elements, e.g., a nitinol, stainless steel or gold stent. The Memotherm® stent, Wiktor stent, Strecker Stent or Palmaz-Schatz stent are common. Nitinol stents are preferably used.
Modified polyurethanes to whose surface hydrophilic substances are coupled, e.g., polyethylene glycols, polysaccharides, cyclodextrins or polyaminopolycarboxylic acids can be considered as polymers.
The therapeutic agents form either complexes with the hydrophilic substances (e.g., radioactive metal ions form very stable metal complexes with DTPA) or inclusion compounds (e.g., cyclodextrin forms a very stable inclusion compound with Iloprost).
To the extent that the hydrophilic substances have complexing properties, they can fix metal ions or radioactive isotopes. Polyaminopolycarboxylic acids, crown ethers, bis- oligo- or polyphosphonates, oligo- or polypeptides, sugar such as chitosan or cyclodextrin derivatives are examples of complexing chelating agents.
Polyaminopolycarboxylic acids in the context of this document are, e.g., DTPA, DOTA, DO3A, TTHA and their derivatives. Let us also mention, as examples, the compounds BOPTA, butylphenyl-DTPA, DTPA-BMEA, DTPA-BMA, dicyclohexyl-DTPA, dicyclohexyl-DOTA, DPDP, DTPA- or DOTA-substituted polymers, GlyMeDOTA such as GlyMeDOTA-substituted polymers and porphyrin derivatives.
The radioactive isotopes of the elements Ag, Au, Ba, Bi, C, Co, Cr, Cu, Fe, Ga, Gd, Hg, Ho, In, Ir, Lu, Mn, P, Pb, Pd, Pm, Re, Rh, Ru, Sb, Sc, Sm, Tb, Tc or Y can be used as radioactive isotopes.
The stents according to the invention can be produced, for example, as follows:
1. With Stents Coated with Radiotherapeutic Agents
1.1 An uncoated stent can first be coated with a polymer (e.g., a polyurethane, obtainable from the reaction of an amphiphilic polyether, diphenylmethane-4,4′-diisocyanate and butanediol). This polymer is modified so that it carries complexing agents (e.g., DTPA groups) on the surface. The polymer is dissolved in a solvent (e.g., chloroform) and the stent is dipped in the polymer solution. After removal of the stent from the polymer solution, it is dried in a drying chamber at room temperature. The hydrophilic stent is ready for use.
1.2 The stent coated according to 1.1 is treated with a solution of radioactive metal (e.g.,
111
InCl
3
,
90
Y). After washing the stent, this stent, coated radiotherapeutically, is ready for use.
1.3 In a variant of this process, the stent is coated in two stages. For this purpose, first the stent is treated with a polymer containing amino groups. The amino groups are present optionally in protected form during the polymerization. Then the amino groups are reacted with DTPA-monoanhydride, as it is described in the literature. The stent now has a polymer coating containing complexing agents (here: DTPA). The stent coated this way is then treated with a solution of radioactive metal (e.g.,
111
InCl
3
,
90
Y). After washing the stent, it is ready for use.
1.3. In another variant of the process, the stent coated with the bonding agent (polymer containing complexing agents) is implanted in an organism. A solution of a radioactive isotope is then administered intravascularly. In this process, the stent is coated radioactively in vivo. In this variant, the complexing agent portion of the bonding agent can be coated with physiologically tolerated metals (e.g., sodium, calcium, zinc, potassium, lithium, magnesium) to increase the tolerance of the implant. Thus, e.g., calcium ions can be complexed by the DTPA groups.
2. Stents Coated with Nonradioactive Therapeutic Agents
2.1 An uncoated stent can first be coated with a polymer (e.g., a polyurethane, obtainable from the reaction of an amphiphilic polyether, diphenylmethane-4,4′-diisocyanate and butanediol). This polymer is modified so that is has cyclodextrin on the surface. The polymer is dissolved in a solvent (e.g., chloroform) and the stent is dipped in the polymer solution. After removing the stent from the polymer solution, it is dried in a drying chamber at room temperature. The hydrophilic stent is ready for use.
2.2 The stent coated according to 2.1 is treated with a solution of the therapeutic agent (e.g., Iloprost). The therapeutic agent forms an inclusion compound with the cyclodextrin and stays bonded to the stent. After washing, the therapeutically coated stent is ready for use. The above-described processes are generally performed at temperatures of 0-80° C. Suitable solvents can be used for coating the stent depending on the respective polymer. When a nonaqueous solvent is used, it should be removed before implantation.
The radioactive stents can also be coated with two or more different isotopes. In particular it is possible to apply short- and long-lived isotopes together on one stent (e.g.,
55
Co with
55
Fe or
99
Mo with
57
Co).
The work steps necessary to perform the processes described in principle above are known to one skilled in the art. Particular embodiments are described in detail in the examples.
Another process for the production of polymer-coated, radioactive stents is based on the process disclosed in German laid-open specification DE 196 04 173 A1, a process for creating antithrombo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymer-coated stents, processes for producing the same and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymer-coated stents, processes for producing the same and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymer-coated stents, processes for producing the same and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3258160

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.