Polymer-coated optical structures

Chemistry: analytical and immunological testing – Involving an insoluble carrier for immobilizing immunochemicals

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

436524, 436525, 436531, 436164, 436805, G01N 33543, G01N 33553, G01N 33551

Patent

active

053106865

DESCRIPTION:

BRIEF SUMMARY
The present invention relates to methods of producing polymer-coated surfaces suitable for use as optical structures. In particular it relates to methods of producing surfaces suitable for use in sensors, for example in biosensors in which one of a pair of binding partners is applied to the surface of a polymer-coated optical structure to form a device for detecting the presence of the complementary component in a sample subsequently brought into contact with the surface.
The properties of simple optical structures have been known for many years and structures such as, for example, diffraction gratings have widespread use, not only as tools for understanding and analysing the wave properties of electromaqnetic radiation but also, more recently, as sensors for detecting chemical, biochemical or biological species in a sample.
U.S. Pat. Nos. 3926564 and 3979184 both describe the adsorption of immunologically reactive proteins onto rough metallic surfaces such that binding of a complementary component changes the optical properties of the surface in a manner detectable by the unaided eye.
EP-0112721 describes the preparation, and use as biosensors, of metallised diffraction gratings coated with a material (hereinafter called "specific binding partner") capable of binding with the species to be assayed (hereinafter called "specific binding partner") capable of binding with the species to be assayed (hereinafter called "ligand") to form a complex. The optical properties of such diffraction gratings are altered as a result of complex formation between the specific binding partner and the ligand and this phenomenon can consequently form the basis of an assay system.
A problem common not only to the use of coated optical structures as biosensors but also to the use of standard optical structures by experimental physicists, is the difficulty of controlling their surface properties. The supporting substrate of such optical structures is often of glass or plastics material but the surface of the structure, particularly where a surface plasmon resonance effect is desired, may comprise a thin metal layer formed, for example, by vacuum deposition. Problems can arise with the use of metal-coated surfaces in corrosive environments which may destroy the integrity of a metal layer. Other inorganic layers e.g. silicon oxide have also been described as diffraction grating surfaces (see, for example, EP-0112721 and EP-0178083). However, it has been observed that silicon oxide does not provide complete protection against chemical attack, particularly if a silver layer is to be protected from attack by saline solutions. The extent of the attack will depend on the thickness of the protective layer and the length of time of exposure to corrosive chemicals. For maximum assay sensitivity an appropriate uniform coating thickness must be provided in the range 10-200 nm. If the sensor is exposed to saline solutions for extended periods of time then it appears that ions can penetrate through the oxide or other layer to produce a tarnish on the silver which may eventually result in the removal of the protective layer thus reducing the usefulness of the device.
Certain of the optical properties of an optical structure, for example its reflection and/or transmission properties and any surface plasmon resonance effect exhibited, will depend on the composition, thickness and uniformity of any surface layers present; the composition of any such surface layers also governs the chemical properties of the optical structure. However, the range of chemical and physical properties of known inorganic layers is limited. A still further problem which may occur when using such optical structures as biosensors is that some biologically active materials, e.g. proteins, may be at least partially inactivated by direct contact with metallic and certain inorganic surfaces.
In contrast, an extremely wide range of chemical and physical properties can be achieved by using appropriate organic polymers and a large number of techniques are known for bonding theret

REFERENCES:
patent: 3932184 (1976-01-01), Cohen et al.
patent: 4647544 (1987-03-01), Nicoli et al.
patent: 4674020 (1987-06-01), Tajima et al.
patent: 4876208 (1989-10-01), Gustafson et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymer-coated optical structures does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymer-coated optical structures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymer-coated optical structures will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2412130

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.