Surgery – Diagnostic testing – Flexible catheter guide
Reexamination Certificate
1999-11-16
2004-01-06
Hindenburg, Max F. (Department: 3736)
Surgery
Diagnostic testing
Flexible catheter guide
Reexamination Certificate
active
06673025
ABSTRACT:
BACKGROUND
This invention relates to the field of guidewires for advancing intraluminal devices such as stent delivery catheters, balloon dilatation catheters, atherectomy catheters and the like within a patient's body, specifically, within a patient's vasculature.
In a typical percutaneous procedure in a patient's coronary system, a guiding catheter having a preformed distal tip is percutaneously introduced into a patient's peripheral artery, e.g. femoral, radial or brachial artery, by means of a conventional Seldinger technique and advanced therein until the distal tip of the guiding catheter is seated in the ostium of a desired coronary artery. There are two basic techniques for advancing a guidewire into the desired location within the patient's coronary anatomy, the first is a preload technique which is used primarily for over-the-wire (OTW) devices and the bare wire technique which is used primarily for rail type systems. With the preload technique, a guidewire is positioned within an inner lumen of an OTW device such as a dilatation catheter or stent delivery catheter with the distal tip of the guidewire just proximal to the distal tip of the catheter and then both are advanced through the guiding catheter to the distal end thereof. The guidewire is first advanced out of the distal end of the guiding catheter into the patient's coronary vasculature until the distal end of the guidewire crosses the arterial location where the interventional procedure is to be performed, e.g. a lesion to be dilated or a dilated region where a stent is to be deployed.
The catheter, which is slidably mounted onto the guidewire, is advanced out of the guiding catheter into the patient's coronary anatomy over the previously introduced guidewire until the operative portion of the intravascular device, e.g. the balloon of a dilatation or a stent delivery catheter, is properly positioned across the arterial location. Once the catheter is in position with the operative means located within the desired arterial location, the interventional procedure is performed. The catheter can then be removed from the patient over the guidewire. Usually, the guidewire is left in place for a period of time after the procedure is completed to ensure reaccess to the arterial location if it is necessary. For example, in the event of arterial blockage due to dissected lining collapse, a rapid exchange type perfusion balloon catheter such as described and claimed in U.S. Pat. No. 5,516,336 (McInnes et al), can be advanced over the in-place guidewire so that the balloon can be inflated to open up the arterial passageway and allow blood to perfuse through the distal section of the catheter to a distal location until the dissection is reattached to the arterial wall by natural healing.
With the bare wire technique, the guidewire is first advanced by itself through the guiding catheter until the distal tip of the guidewire extends beyond the arterial location where the procedure is to be performed. Then a rail type catheter, such as described in U.S. Pat. No. 5,061,395 (Yock) and the previously discussed McInnes et al. which are incorporated herein by reference, is mounted onto the proximal portion of the guidewire which extends out of the to proximal end of the guiding catheter which is outside of the patient. The catheter is advanced over the guidewire, while the position of the guidewire is fixed, until the operative means on the rail type catheter is disposed within the arterial location where the procedure is to be performed. After the procedure the intravascular device may be withdrawn from the patient over the guidewire or the guidewire advanced further within the coronary anatomy for an additional procedure.
Conventional guidewires for angioplasty, stent delivery, atherectomy and other vascular procedures usually comprise an elongated core member with one or more tapered sections near the distal end thereof and a flexible body such as a helical coil or a tubular body of polymeric material disposed about the distal portion of the core member. A shapable member, which may be the distal extremity of the core member or a separate shaping ribbon which is secured to the distal extremity of the core member, extends through the flexible body and is secured to the distal end of the flexible body by soldering, brazing or welding which forms a rounded distal tip. Torquing means are provided on the proximal end of the core member to rotate, and thereby steer, the guidewire while it is being advanced through a patient's vascular system.
Further details of guidewires, and devices associated therewith for various interventional procedures can be found in U.S. Pat. No. 4,748,986 (Morrison et al.); U.S. Pat. No. 4,538,622 (Samson et al.): U.S. Pat. No. 5,135,503 (Abrams); U.S. Pat. No. 5,341,818 (Abrams et al.); U.S. Pat. No. 5,345,945 (Hodgson, et al.) and U.S. Pat. No. 5,636,641 (Fariabi) which are hereby incorporated herein in their entirety by reference thereto.
Conventional guidewires using tapered distal core sections as discussed above can be difficult to use in many clinical circumstances because they have an abrupt stiffness change along the length of the guidewire, particularly where the tapered portion begins and ends. As a guidewire having a core with an abrupt change in stiffness is moved through tortuous vasculature of a patient, the physician moving the guidewire can feel the abrupt resistance as the stiffness change is deflected by the curvature of the patient's vasculature. The abrupt change in resistance felt by the physician can hinder the physician's ability to safely and controllably advance the guidewire through the vasculature. What has been needed is a guidewire, and particularly a guidewire core member, that does not have an abrupt change in stiffness, particularly in the portions of the distal section that are subject to bending in the vasculature and guiding catheter. What has also been needed is a guidewire with a smooth continuous low friction surface of the guidewire in combination with high strength and flexibility. In addition, it is desirable for a guidewire to have a discrete radiopacity and predetermined size and spacing of radiopaque elements that serve as a measuring guide for determining the size of lesions.
SUMMARY OF THE INVENTION
The guiding member of the present invention has an elongate core member with proximal and distal core sections and a flexible tubular body such as a helical coil or polymeric body disposed about and secured to the distal section of the core member. The distal core section has a plurality of distally tapering contiguous core segments having tapers of up to 25° and lengths of up to 15 cm. As used herein the measurement of tapers is the angle of a line tangent to the surface of the segment in line with the longitudinal axis of the core member. The first tapered core segment, which typically has a circular transverse cross-section, preferably tapers from the diameter of the adjacent proximal core section to a diameter of about half to about three quarters of the diameter of the adjacent proximal core section. The second tapered core segment, which also has a circular transverse cross-section, tapers from the smallest diameter of the first tapered core segment to a diameter of not more than one-half the smallest diameter of the first tapered core segment.
One embodiment includes a first core segment with a taper in the distal direction and a distally contiguous second core segment having a taper in the distal direction greater than the taper of the first core segment. The taper of the first or proximal segment generally can be up to about 5°, preferably about 0.01° to about 1°, more preferably about 0.011° to about 0.2°. The taper of the second or distal core segment can be up to about 6°, preferably about 0.01° to about 1.1°, more preferably about 0.015° to about 0.45°.
In another embodiment, the second tapered core segment has a length greater than the first tapered core segment, with the distal segment generally ran
Anderson David M.
Biagtan Emmanuel C.
Brennan Lawrence E.
Burkett David H.
Cornish Wayne E.
Advanced Cardiovascular Systems Inc.
Fulwider Patton Lee & Utecht LLP
McCrosky David J.
LandOfFree
Polymer coated guidewire does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polymer coated guidewire, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymer coated guidewire will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3234386