Polymer coated carrier particles for electrophotographic...

Radiation imagery chemistry: process – composition – or product th – Electric or magnetic imagery – e.g. – xerography,... – Post imaging process – finishing – or perfecting composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S137170

Reexamination Certificate

active

06245474

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates to polymer coated carrier particles for electrophotographic developers, a method of making the same by dry powder coating, and developers containing the coated carrier particles.
2. Description of Related Art
The electrostatographic process, and particularly the xerographic process, is well known. This process involves the formation of an electrostatic latent image on a photoreceptor, followed by development of the image with a developer, and subsequent transfer of the image to a suitable substrate. Numerous different types of xerographic imaging processes are known wherein, for example, insulative developer particles or conductive developer particles are selected depending on the development systems used. Moreover, of importance with respect to the aforementioned developer compositions is the appropriate triboelectric charging values associated therewith, as it is these values that enable continued constant developed images of high quality and excellent resolution.
Various coated carrier particles for use in electrostatographic developers are known in the art. Carrier particles for use in the development of electrostatic latent images are described in many patents including, for example U.S. Pat. No. 3,590,000. These carrier particles may consist of various cores, including steel, with a coating thereover of fluoropolymers; and terpolymers of styrene, methacrylate, and silane compounds. Recent efforts have focused on the attainment of coatings for carrier particles, for the purpose of improving development quality; and also to permit particles that can be recycled, and that do not adversely affect the imaging member in any substantial manner. Many of the present commercial coatings can deteriorate rapidly, especially when selected for a continuous xerographic process where the entire coating may separate from the carrier core in the form of chips or flakes; and fail upon impact, or abrasive contact with machine parts and other carrier particles. These flakes or chips, which cannot generally be reclaimed from the developer mixture, have an adverse effect on the triboelectric charging characteristics of the carrier particles thereby providing images with lower resolution in comparison to those compositions wherein the carrier coatings are retained on the surface of the core substrate. Further, another problem encountered with some prior art carrier coatings resides in fluctuating triboelectric charging characteristics, particularly with changes in relative humidity. The aforementioned modification in triboelectric charging characteristics provides developed images of lower quality, and with background deposits.
There is also illustrated in U.S. Pat. No. 4,233,387 coated carrier components for electrostatographic developer mixtures comprised of finely divided toner particles clinging to the surface of the carrier particles. Specifically, there is disclosed in this patent coated carrier particles obtained by mixing carrier core particles of an average diameter of from between about 30 microns to about 1,000 microns, with from about 0.05 percent to about 3.0 percent by weight, based on the weight of the coated carrier particles, of thermoplastic resin particles. The resulting mixture is then dry blended until the thermoplastic resin particles adhere to the carrier core by mechanical impaction, and/or electrostatic attraction. Thereafter, the mixture is heated to a temperature of from about 320° F. to about 650° F. for a period of 20 minutes to about 120 minutes, enabling the thermoplastic resin particles to melt and fuse on the carrier core. While the developer and carrier particles prepared in accordance with the process of this patent, the disclosure of which is incorporated herein by reference in its entirety, are suitable for their intended purposes, the conductivity values of the resulting particles are not constant in all instances, for example, when a change in carrier coating weight is accomplished to achieve a modification of the triboelectric charging characteristics; and further with regard to U.S. Pat. No. 4,233,387, in many situations carrier and developer mixtures with only specific triboelectric charging values can be generated when certain conductivity values or characteristics are contemplated.
U.S. Pat. No. 4,937,166, incorporated by reference herein in its entirety, describes a carrier composition comprised of a core with a coating thereover comprised of a mixture of first and second polymers that are not in close proximity thereto in the triboelectric series. The core is described to be iron, ferrites, steel or nickel. The first and second polymers are selected from the group consisting of polystyrene and tetrafluoroethylene; polyethylene and tetrafluoroethylene; polyethylene and polyvinyl chloride; polyvinyl acetate and tetrafluoroethylene; polyvinyl acetate and polyvinyl chloride; polyvinyl acetate and polystyrene; and polyvinyl acetate and polymethyl methacrylate. The particles are described to have a triboelectric charging value of from about −5 to about −80 microcoulombs per gram.
U.S. Pat. No. 4,935,326, incorporated by reference herein in its entirety, discloses a carrier and developer composition, and a process for the preparation of carrier particles with substantially stable conductivity parameters which comprises (1) providing carrier cores and a polymer mixture; (2) dry mixing the cores and the polymer mixture; (3) heating the carrier core particles and polymer mixture, whereby the polymer mixture melts and fuses to the carrier core particles; and (4) thereafter cooling the resulting coated carrier particles. These particulate carriers for electrophotographic toners are described to be comprised of core particles with a coating thereover comprised of a fused film of a mixture of first and second polymers which are not in close proximity in the triboelectric series, the mixture being selected from the group consisting of polyvinylidenefluoride and polyethylene; polymethyl methacrylate and copolyethylene vinyl acetate; copolyvinylidenefluoride tetrafluoroethylene and polyethylenes; copolyvinylidenefluoride tetrafluoroethylene and copolyethylene vinyl acetate; and polymethyl methacrylate and polyvinylidenefluoride.
U.S. Pat. No. 5,567,562, incorporated by reference herein in its entirety, describes a process for the preparation of conductive carrier particles which comprises mixing a carrier core with a first polymer pair and a second polymer pair, heating the mixture, and cooling the mixture, wherein the first and second polymer pair each contain an insulating polymer and a conductive polymer and wherein the carrier conductivity thereof is from about 10
−6
to about 10
−14
(ohm-cm)
−1
. The first polymer pair is preferably comprised of an insulating polymethyl methacrylate and a conductive polymethyl methacrylate, and the second polymer pair is preferably comprised of an insulating polyvinylidenefluoride and a conductive polyvinylidenefluoride.
In addition, Hewlett Packard sells a developer containing a coated carrier for use in its HP D640 printer, which coated carrier is believed to be comprised of a magnetite core solution coated with a conductive polymer of polymethyl methacrylate containing carbon black, although the carrier formulation is proprietary to Hewlett Packard and cannot be determined with certainty. Typically, however, carriers obtained by applying insulating resinous coatings to porous metallic carrier cores using solution coating techniques are undesirable from many viewpoints. For example, the coating material will usually reside in the pores of the carrier cores, rather than at the surfaces thereof, and therefore is not available for triboelectric charging when the coated carrier particles are mixed with finely divided toner particles. Attempts to resolve this problem by increasing the carrier coating weights, for example, to as much as 3 percent or greater to provide an effective triboelectric coating to the carrier particles n

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymer coated carrier particles for electrophotographic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymer coated carrier particles for electrophotographic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymer coated carrier particles for electrophotographic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2524573

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.