Semiconductor device manufacturing: process – Making device or circuit responsive to nonelectrical signal – Responsive to electromagnetic radiation
Reexamination Certificate
2006-08-22
2006-08-22
Picardat, Kevin M. (Department: 2822)
Semiconductor device manufacturing: process
Making device or circuit responsive to nonelectrical signal
Responsive to electromagnetic radiation
C438S063000, C438S066000, C438S082000
Reexamination Certificate
active
07094622
ABSTRACT:
A process for fabricating a polymer based circuit by the following steps. A mold of a design is formed through a lithography process. The design is transferred to a polymer substrate through a hot embossing process. A metal layer is then deposited over at least part of said design and at least one electrical lead is connected to said metal layer.
REFERENCES:
patent: 5502667 (1996-03-01), Bertin et al.
patent: 5563344 (1996-10-01), Kaiser et al.
patent: 5587128 (1996-12-01), Wilding et al.
patent: 5726480 (1998-03-01), Pister
patent: 5741156 (1998-04-01), Wilson
patent: 6033913 (2000-03-01), Morozov et al.
patent: 6183829 (2001-02-01), Daecher et al.
patent: 6201980 (2001-03-01), Darrow et al.
patent: 6346376 (2002-02-01), Sigrist et al.
patent: 6393913 (2002-05-01), Dyck et al.
patent: 6472459 (2002-10-01), Morales et al.
patent: 6517995 (2003-02-01), Jacobson et al.
patent: 6607934 (2003-08-01), Chang et al.
patent: 2002/0098611 (2002-07-01), Chang et al.
patent: 2003/0047533 (2003-03-01), Reid et al.
Roos, N., Luxbacher, T., Gilsner, T., Pfeiffer, K., Schulz, H. & Scheer, H.-C.; Nanoimprint Lithography with a Commercial 4 Inch Bond System for Hot Embossing, Presented at SPIE's Microlithography, Feb. 27-28, 2001, Santa Clara, CA.
Heyderman, L.J., Schift, H., David, C., Ketterer, B., Auf Der Maur, M. & Gobrecht, J.; Nanofabrication Using Hot Embossing Lithography and Electroforming; Microelectronic Engineering 57-58 (2001), pp. 375-380.
Scheer, H.-C., Schultz, H. & Lyebyedyev; Strategies for Wafer-Scale Hot Embossing Lithography; Proc. SPIE 4349, (2001) p. 86.
Lee, G., Chen, S., Huang, G., Sung, W. & Lin, Y.; Microfabricated Plastic Chips by Hot Embossing Methods and Their Applications for DNA Separation and Detection; Sensors and Actuators B 75 (2001), pp. 142-148.
Becker, H. & Dietz, W.; Microfluidic Devices for u-TAS Applications Fabricated by Polymer Hot Embossing; SPIE vol. 3515; Santa Clara, CA; Sep. 1998; pp. 177-181.
Becker, H. & Heim, U.; Hot Embossing as a Method for the Fabrication of Polymer High Aspect Ratio Structures; Sensors and Actuators 83 (2000) pp. 130-135.
Becker, H. & Heim, U; Silicon as Tool Material for Polymer Hot Embossing; Proceedings MEMS 99; 1999; pp. 228-231.
Muller, K.-D., Bacher, W. & Heckele, M.; 3D Diced Microcomponents Fabricated by Multi-Layer Hot Embossing; MME, 1999; Micro-Mechanics Europe, Gif-sur-Yvette, F, Sep. 27-28, 1999.
Roetting, O., Kohler, B., Reuther, F., Blum, H. & Bacher, W.; Production of Movable Metallic Microstructure by Aligned Hot Embossing and Reactive Ion Etching; Proceedings of SPIE—The International Society for Optical Engineering, vol. 3680; pp. 1038-1045.
Lin, L., Chiu, C., Bacher, W. & Heckele, M.; Microfabrication Using Silicon Mold Inserts and Hot Embossing; Proceedings of the International Symposium on Micro-Machine and Human Science; 1996; pp. 67-71.
Baski, A., Albrecht, T. & Quate, C.; Tunnelling Accelerometer; Journal of Micro-Scopy, 152; pp. 73-76, 1988.
Waltman, S. & Kaiser, W.; An Electron Tunneling Sensor; Sensors Actuators, vol. 19; pp. 201-210, 1989.
Kenny, T., Waltman, S. Reynolds, J. & Kaiser, W.; Micromachined Silicon Tunnel Sensor for Motion Detection; Appl. Phys. Lett., vol. 58; pp. 100-102; 1991.
Tang, W., Nguyen, T. & Howe, R.; Laterally Driven Polysilicon Resonant Microstructures; IEEE, Feb. 20-22, 1989, pp. 53-59.
Johnson, W. & Warne, L.; Electrophysics of Micromechanical Comb Actuators; Journal of Microelectromechanical Systems, vol. 4, 1995, pp. 49-59.
Ye, W. & Mukherjee, S.; Optimal Shape Design of Three-Dimensional MEMS with Applications to Electrostatic Comb Drives; Cornell University, Ithaca, NY; pp. 580-585.
Ye, W., Mukherjee, S. & MacDonald, N.; Optimal Shape Design of an Electrostatic Comb Drive in Microelectromechanical Systems; Journal of Microelectromechanical Systems, vol. 7; 1998; pp. 16-26.
Rodgers, M., Kota, S., Hetrick, J., Li, Z., Jensen, B., Krygowski, T., Miller, S., Barnes, S. & Burg, M.; A New Class of High Force, Low-Voltage, Compliant Actuation Systems; www.mems.sandi.gov; Albuquerque, NM.
Yeh, J., Hui, C. & Tien, N.; Electrostatic Model for an Asymmetric Combdrive; Journal of Microelectromechanical Systems, vol. 9; 2000; pp. 126-135.
Chan, E. & Dutton, R.: Electrostatic Micromechanical Actuator with Extended Range of Travel; Journal of Microelectromechanical Systems, vol. 9, 2000; pp. 321-328.
Hirano, T., Furuhata, T., Gabriel, K. & Fujita, H.; Design, Fabrication, and Operation of Submicron Gap Comb-Drive Microactuators; Journal of Microelectromechanical Systems, vol. 1; Mar. 1992; pp. 52-59.
Patterson, P., Han, D., Nguyen, H., Toshiyoshi, H., Chao, R. & Wu, M.; A Scanning Micromirror with Anular Comb Drive Actuation; 15th IEEE International Conference on Microelectromechanical Systems, 2002; pp. 544-547.
Cui Tianhong
Wang Jing
Zhao Yongjun
Jones, Walker, Waechter Poitevent, Carrere, & Denegre, L.L.
Louisiana Tech University Foundation, Inc.
Picardat Kevin M.
LandOfFree
Polymer based tunneling sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polymer based tunneling sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymer based tunneling sensor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3617883