Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From phenol – phenol ether – or inorganic phenolate
Reexamination Certificate
2001-03-13
2002-12-31
Hampton-Hightower, P. (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
From phenol, phenol ether, or inorganic phenolate
C528S125000, C528S126000, C528S128000, C528S172000, C528S173000, C528S176000, C528S179000, C528S183000, C528S185000, C528S188000, C528S220000, C528S229000, C528S350000, C528S351000, C528S353000, C428S001100, C428S001200, C428S001260, C428S473500, C427S162000, C427S164000, C427S165000, C264S299000, C264S309000, C264S330000, C264S331110
Reexamination Certificate
active
06500913
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to novel polyimides and a process for the preparation thereof More particularly the invention relates to polymides having formula (1)
and a process for their preparation using a renewable resource, Cashew Nut Shell Liquid (CNSL). The polyimides provided by the present invention are useful particularly as alignment films for liquid crystal display devices. The polyimide of formula (1) may be a homo or copolyimide comprising an aromatic diamine having at least one pentadecyl phenoxy group per benzene ring as shown in formula (2)
as the essential diamine component and a tetracarboxylic acid or its derivative (R
1
) and optionally other common diamines. R
2
will be the compound having formula (2) in the case of homopolyimides and will be a common diamine in the case of copolyimides.
BACKGROUND OF THE INVENTION
Polyimides are widely used as protective materials or insulating materials in electric and electronic fields due to their high mechanical strength, heat resistance and solvent resistance. However, developments in electric and electronic fields have been remarkable in recent years, and increasingly high levels of properties have been required for the materials to be used in such fields. Especially for alignment films for liquid crystal display devices, polyimides have heretofore been employed in most cases by virtue of the uniform quality and durability of the coated film surface. However along with the trend for high densification and high performance of display devices, the surface properties of the polyimide coating films have become particularly important, and it has been necessary to impart new properties which conventional polyimides do not have.
Liquid crystal display devices are display devices, which utilize electrooptical changes of liquid crystals, and they are small in size and light in weight and have a feature that their power consumption is small. Accordingly they have found remarkable developments in recent years as display devices for various displays. In certain liquid crystals cells, particularly in those with nematic and cholestric liquid crystals, the cell wall which are in contact with the liquid crystal material must be provided with alignment layers to achieve the desired molecular orientation of the liquid crystals. As a rule, the alignment layers are deposited so that molecules at opposite cell walls lie mutually at 90° C. The alignment layer consists either of inorganic substances deposited by oblique evaporation in a vacuum or of organic substances applied by dipping, brushing, or spraying.
Alignment layers of inorganic materials, such as calcium fluoride or silicon monoxide, are formed by evaporating the substances in a high vacuum at a very small angle to the substrate. Such layers are not suitable for mass production because they require a large amount of work and apparatus.
Alignment layers of organic materials are relatively easy to produce because the organic material, dissolved in a solvent can be applied by dipping, spraying, or brushing. In such layers, the desired molecular orientation is achieved by subjecting the applied material to directional mechanical action, particularly by rubbing the surface in a predetermined direction with a cloth of e.g. nylon, rayon, or polyester. The liquid crystal molecules then align themselves on such a layer by adhering at one end to the organic material. The organic film used may be polyvinyl alcohol, polyoxyethylene, polyamide, or polyimide. However polyimide is commonly used in view of the chemical stability, thermal stability, etc. however, the tilt angle obtainable by rubbing the polyimide is usually at a level from 1° to 3° and it has been difficult to attain a large tilt angle.
In the field of liquid crystal alignment films, it has been difficult to obtain a large tilt angle constantly by rubbing an organic film of polyimide or the like. As a means to solve this problem, Japanese Unexamined Patent Publication No. 297819/1987 discloses a treating agent for liquid crystal alignment comprising of a reaction product of a long chain alkylamine with a polyimide precursor. Further, Japanese Unexamined Patent Publication No. 262527/1989 and No. 262528/1989 disclose an agent for liquid crystal alignment which comprises of a mixture comprising a long chain alkyl compound and a polyimide precursor. Japanese Unexamined Patent Publication No. 25126/1989 discloses a treating agent for liquid crystal alignment which comprises of a polyimide prepared from a diamine having an alkyl group. Thus many attempts have been made to increase the pretilt angle of the liquid crystal by introducing an alkyl group into a polyimide, and it has been possible to increase the tilt angle to some extent. On the other hand, such attempts have resulted in a new problem when an alkyl group is introduced into a polyimide to increase the tilt angle, the wettability of liquid crystal tends to be low, and in an extreme case, the failure in liquid crystal alignment is likely to result. Consequently, the display performance of the liquid crystal display device tends to be poor.
It is therefore necessary to develop a polyimide alignment film, which gives good tilt angle as well as adequate wettability. U.S. Pat. No. 5861534/1999 discloses a polyimide alignment layer prepared from different diamines with long alkyl group and a readily polarizable chemical bond group, which gives good alignment properties.
OBJECTS OF THE INVENTION
The main object of the present invention is therefore to provide novel polyimides and a process for the preparation thereof.
Another object is to provide a process for the preparation of the polyimides, which can be used to synthesize a polyimide liquid crystal alignment layer from a renewable and economically viable resource, cashew nut shell liquid.
SUMMARY OF THE INVENTION
It is observed that reacting a diamine containing at least one mole % of the diaminobenzene derivative of formula (2), which contains a pentadecyl phenoxy group, introduced to the diamine structure from a naturally occurring renewable resource, cashew nut shell liquid and a tetracarboxylic acid or its derivatives (R
1
), optionally with other common diamines provides a homo or copolyimide having formula (1). R
2
is compound having formula (2) in the case of homopolyimides and common diamines in the case of copolyimides. The use of such a diamine, which was synthesized from a naturally occurring renewable and economically viable resource, the cashew nut shell liquid, opens a new route for the production of polyimide having on its side chain, a substituent similar to a liquid crystal molecule and with excellent aligning properties and high solubility in common organic solvents.
Accordingly, the present invention provides a polyimide of the general formula (1)
wherein R
1
is a tetracarboxylic acid or a derivative thereof and R
2
is a compound of formula 2 or a diamine
In one embodiment of the invention, the polyimide of formula 1 is a homo or a copolyimide.
The present invention also provides a process for the preparation of a polyimide of the general formula (1) said process comprising reacting a diamine including an aromatic diamine having at least one pentadecyl phenoxy group per benzene ring of formula (2)
as the essential diamine component with tetracarboxylic acid or a derivative thereof optionally in the presence of a second diamine in a solvent at a temperature ranging between 120° C. to 220° C. in a stream of inert gas for a period ranging between 6 to 12 hrs, precipitating the resulting polymer in methanol, filtering and drying to obtain the desired polyimide of formula 1.
In yet another embodiment of the invention the solvent used for polymerization is a high temperature solvent selected from nitrobenzene, benzonitrile, &agr;-chloronaphthalene, o-dichlorobenzene, trichlorobenzenes, and phenolic solvents such as m-Cresol, o-Cresol, p-Cresol, o-Cresol, o-Chlorophenol and p-Chlorophenol.
In a further embodiment of the invention, the solvent used for the polymerisation is m-Cresol.
The
Kerboua Rachid
Mathew Jinu Suju
Mercier Reges
Vernekar Subhash Pundlik
Council of Scientific and Industrial Research
Hampton-Hightower P.
Ladas & Parry
LandOfFree
Polyimides, process for the preparation thereof and use... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polyimides, process for the preparation thereof and use..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyimides, process for the preparation thereof and use... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2989293