Polyimide membranes for hyperfiltration recovery of aromatic...

Liquid purification or separation – Filter – Material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S500270, C210S490000, C264S041000, C264S048000, C264S049000, C208S308000

Reexamination Certificate

active

06180008

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to improved asymmetric membranes fashioned from a polyimide and the method of preparing the membranes. The invention also relates to the method of using the membranes for the separation of aromatic hydrocarbons from non-aromatic hydrocarbons under hyperfiltration conditions.
Of particular interest, the membranes are useful for the recovery of aromatic hydrocarbons, i.e. toluene, having a high purity from process streams containing aromatic and non-aromatic hydrocarbons during a commercial process for the production of aromatic hydrocarbons.
BACKGROUND OF THE INVENTION
The separation of aromatics from non-aromatics is useful in upgrading aromatics containing streams in petroleum refineries, such streams including, naphtha streams, heavy catalytic naphtha streams, intermediate catalytic naphtha streams, light aromatic streams and reformate streams, and in chemical operations for the recovery of aromatics such as benzene, toluene, xylenes, naphthalene, etc.
The use of membranes to separate aromatics from saturates has long been pursued by the scientific and industrial community. Methods of membrane separation include hyperfiltration (also known as reverse osmosis in aqueous separations), pervaporation and perstraction. Pervaporation relies on vacuum on the permeate side to evaporate the permeate from the surface of the membrane and maintain the concentration gradient driving force which drives the separation process. In perstraction, the permeate molecules in the feed diffuse into the membrane film, migrate through the film and reemerge on the permeate side under the influence of a concentration gradient. A sweep flow of liquid or gas is used on the permeate side of the membrane to maintain the concentration gradient driving force. In contrast, hyperfiltration does not require the use of external forces on the permeate side of the membrane, but drives the separation through application of a pressure gradient.
Membrane separation of aromatics from saturates has been the subject of numerous patents.
U.S. Pat. No. 3,370,102 describes a general process for separating a feed into a permeate stream and a retentate stream and utilizes a sweep liquid to remove the permeate from the face of the membrane to thereby maintain the concentration gradient driving force. The process can be used to separate a wide variety of mixtures including various petroleum fractions, naphthas, oils, hydrocarbon mixtures. Expressly recited is the separation of aromatics from kerosene.
U.S. Pat. No. 2,958,656 teaches the separation of hydrocarbons by type, i.e., aromatic, unsaturated, saturated, by permeating a portion of the mixture through a non-porous cellulose ether membrane and removing permeate from the permeate side of the membrane using a sweep gas or liquid. Feeds include hydrocarbon mixtures, naphtha (including virgin naphtha, naphtha from thermal or catalytic cracking, etc.).
U.S. Pat. No. 2,930,754 teaches a method for separating hydrocarbons e.g., aromatic and/or olefins from gasoline boiling range mixtures, by the selective permeation of the aromatic through certain cellulose ester non-porous membranes. The permeated hydrocarbons are continuously removed from the permeate zone using a sweep gas or liquid.
U.S. Pat. No. 4,115,465 teaches the use of polyurethane membranes to selectively separate aromatics from saturates via pervaporation.
U.S. Pat. No. 4,929,358 teaches the use of polyurethane membranes for the separation of aromatics from non-aromatics. Permeation is conducted under pervaporation, perstraction, reverse osmosis, or dialysis conditions. None of the experimental results reported in this patent were obtained under reverse osmosis conditions.
Polyimide membranes have been used for the separation of aromatics. U.S. Pat. No. 4,571,444 teaches the separation of alkylaromatics from aromatic solvents using a polyimide polymer membrane. The polyimide membrane of choice was an asymmetric polyimide polymer membrane prepared from a fully imidized, highly aromatic polyimide copolymer. Permeation was performed under reverse osmosis conditions.
U.S. Pat. No. 4,532,029 discloses the use of an asymmetric polyimide membrane for the separation of aromatics from lower aromatic middle distillate feeds. Permeation of the feeds in the presence of a light polar solvent, e.g., acetonitrile, was required to obtain permeates having a high aromatic content, i.e., greater than 86%.
The majority of investigations for aromatic
on-aromatic separations have heretoafore involved pervaporation or perstraction separation techniques. This is probably due to reports of prior literature that very high operational pressures are required in hyperfiltration to reach a equivalent performance achievable by pervaporation and perstraction processes. Unfortunately, pervaporation and perstraction separation systems are higher cost than a hyperfiltration system due to expenses associated with vacuum, refrigeration and heat transfer systems.
Consequently, it is an advantage of this invention to provide improved asymmetric polyimide membranes for the separation of aromatic hydrocarbons from non-aromatic hydrocarbons in a feed stream by hyperfiltration. It is also an advantage of this invention to provide a method of preparing the membrane by a phase inversion technique, which method permits variations in processing conditions to optimize the selective permeation of aromatic hydrocarbons through the membranes in the presence of non-aromatic hydrocarbons.
Another advantage of the invention is to provide a membrane useful in a process of separating aromatic hydrocarbons as described in copending application Ser. No. 125,256, entitled “Recovery of Aromatic Hydrocarbons Using Lubricating Oil1-Conditioned Membranes”, Mobil filed on even date herewith.
Other facets and advantages of the present invention will be apparent from the ensuing description and the appended claims.
SUMMARY OF THE INVENTION
Improved asymmetric membranes which have high selectivity to permeate aromatic hydrocarbons in the presence of non-aromatic hydrocarbons under hyperfiltration conditions have been found. The membranes are prepared from a polyimide by a phase inversion technique and are thereafter treated with a lubricating oil to condition the membranes. Membranes in accordance with the invention exhibit over 30% rejection of the non-aromatic hydrocarbon materials at a commercially adequate flow rate in a temperature range of about −20 to 150° C.
Using the membranes of the invention, permselective separation of aromatic hydrocarbons from non-aromatic hydrocarbons in a feed stream may be accomplished by hyperfiltration with sufficient flux and selectivity to offer improved economics over pervaporation conditions. However, it is not intended to limit the use of the membranes to hyperfiltration mode of operation.
A process for using the membrane of the present invention is disclosed in co-pending application Ser. No. 126,256, entitled “Recovery of Aromatic Hydrocarbons Using Lubricating Oil Conditioned Membranes”, filed on even date herewith.
DETAILED DESCRIPTION OF THE INVENTION
The term “aromatic hydrocarbon” is used herein to designate a hydrocarbon-based organic compound containing one or more aromatic rings. An aromatic ring is typified by benzene having a single aromatic nucleus. Aromatic compounds having more than one aromatic ring include, for example, naphthalene, anthracene, etc. Preferred aromatic hydrocarbons useful in the present invention include those having 1 to 2 aromatic rings.
The term “non-aromatic hydrocarbon” is used herein to designate a hydrocarbon-based organic compound having no aromatic nucleus.
For purposes of this invention, the term “hydrocarbon-based organic compound” is used to mean an organic compound having a predominately hydrocarbon character. It is contemplated within the scope of this definition that a hydrocarbon compound may contain at least one non-hydrocarbon radical (e.g., sulfur or oxygen) provided that said non-hydrocarbon radicals do not alter the predominant

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polyimide membranes for hyperfiltration recovery of aromatic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polyimide membranes for hyperfiltration recovery of aromatic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyimide membranes for hyperfiltration recovery of aromatic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2487186

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.