Polyhydroxyalkanoate compositions having controlled...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S890100, C604S891100, C606S075000, C606S077000

Reexamination Certificate

active

06828357

ABSTRACT:

The present invention generally relates to polyhydroxyalkanoate polymers and methods for altering their rates of degradation, particularly methods which accelerate this process, and novel biodegradable polyhydroxyalkanoates which are particularly suited for medical applications.
BACKGROUND OF THE INVENTION
In the medical area, a number of degradable polymers have been developed that breakdown in vivo into their respective monomers within weeks or a few months. Despite the availability of these synthetic degradable polymers, there is still a need to develop degradable polymers which can further extend the range of available options. In particular there is a need to develop degradable polymers which offer a wider range of mechanical properties.
Polyhydroxyalkanoates are natural, thermoplastic polyesters and can be processed by traditional polymer techniques for use in an enormous variety of applications, including consumer packaging, disposable diaper linings and garbage bags, food and medical products. Initial efforts focused on molding applications, in particular for consumer packaging items such as bottles, cosmetic containers, pens, golf tees and the like. U.S. Pat. Nos. 4,826,493 and 4,880,592 describe the manufacture of PHB and PHBV films and their use as diaper backsheet. U.S. Pat. No. 5,292,860 describes the manufacture of the PHA copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and the use of these polymers for making diaper backsheet film and other disposable items. Diaper back sheet materials and other materials for manufacturing biodegradable or compostable personal hygiene articles from PHB copolymers other than PHBV are described in PCT WO 95/20614, WO 95/20621, WO 95/23250 WO 95/20615, WO 95/33874, U.S. Pat. No. 5,502,116, U.S. Pat. No. 5,536,564, U.S. Pat. No. 5,489,470 and WO 96/08535.
One of the most useful properties of PHAs which readily distinguishes them from petrochemical derived polymers is their biodegradability. Produced naturally by soil bacteria, the PHAs are degraded upon subsequent exposure to these same bacteria in either soil, compost, or marine sediment. Biodegradation of PHAs is dependent upon a number of factors such as the microbial activity of the environment and the surface area of the item. In addition, temperature, pH, molecular weight and crystallinity are important factors. Biodegradation starts when microorganisms begin growing on the surface of the plastic and secrete enzymes which break down the polymer into hydroxy acid monomeric units. The hydroxy acids are then taken up by the microorganisms and used as carbon sources for growth. In aerobic environments the polymers are degraded to carbon dioxide and water, whereas in anaerobic environments the degradation products are carbon dioxide and methane (Williams, S. F. and Peoples, O. P., CHEMTECH, 26, 38-44 (1996)). While the mechanism for degradation of PHAs in the environment is widely considered to be via enzymatic attack and can be relatively rapid, the mechanism of degradation in vivo is generally understood to involve simple hydrolytic attack on the polymers' ester linkages. It may or may not be protein mediated. Unlike polymers comprising 2-hydroxyacids like polyglycolic and polylactic acid, the polyhydroxyalkanoates are normally comprised of 3-hydroxyacids and in certain cases even 4, 5, and 6-hydroxyacids. Ester linkages derived from these hydroxyacids are generally less susceptible to hydrolysis than ester linkages derived from 2-hydroxyacids.
Researchers have developed processes for the production of a great variety of PHAs and around 100 different monomers have been incorporated into polymers under controlled fermentation conditions (Steinbuchel, A. and Valentin, H. E., FEMS Microbiol., Lett., 128:219-228 (1995)). There are currently only two commercially available PHA compositions, poly-(R)-3-hydroxybutyrate (PHB) and poly-(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate (PHBV). Because of their great compositional diversity, PHAs with a range of physical properties can be produced (Williams, S. F. and Peoples, O. P., CHEMTECH, 2:3844 (1996)). The commercially available PHAs, PHB and PHBV, represent only a small component of the property sets available to the PHAs. For example, the extension to break of PHB and PHBV range from around 4 to 42%, whereas the same property for poly-4-hydroxybutyrate (P4HB) is about 1000% (Saito, Y. and Doi, Y. Int. J. Biol. Macromol. (1994) 16:99-104). Similarly, the values of Young's modulus and tensile strength for PHB and PHBV are 3.5 to 0.5 GPa and 40 to 16 MPa, respectively (for increasing HV content to 25 mol %), compared to 149 MPa and 104 MPa, respectively for P4HB (Saito, Y. and Doi, Y. Int. J. Biol. Macromol. (1994) 16: 99-104).
In addition to finding commercial use as a biodegradable replacement for synthetic commodity resins, PHB and PHBV have been extensively studied for use in biomedical applications. These studies range from potential uses in controlled release which have been reviewed by Koosha, F. et al., Crit. Rev. Ther. Drug Carrier Syst. 6:117-130 (1989) and Pouton C. W. and Aldhtar, S. Adv. Drug Delivery Rev., 18:133-162 (1996), to use in formulation of tablets, surgical sutures, wound dressings, lubricating powders, blood vessels, tissue scaffolds, surgical implants to join tubular body parts, bone fracture fixation plates, and other orthopedic uses, as described in WO 98/51812 by Metabolix. Perhaps the most advanced medical development is the use of PHB and PHBV for preparing a porous, bioresorbable flexible sheet for tissue separation and stimulation of tissue regeneration in injured soft tissue described in European Patent Application 754 467 A1 to Bowald, S. and Johansson-Ruden, G. filed Jun. 26, 1988 and EP 0349505 A2. Recent reports have also described the use of PHBV to sustain cell growth (Rivard, C. H. et al., J. Appl. Biomat., 6:65-68 (1995)).
Besides biocompatibility, it is often desired that an implanted medical device should degrade after its primary function has been met. PHB and PHBV, the only PHAs tested as medical implants to date, have shown very long in vivo degradation periods, of greater than one year for PHB (Duvemoy, O., Malm, et al. Thorac. Cardiovasc. Surgeon (1995) 43:271-74. Malm, et al., C. J. Thorac. Cardiovasc. Surg. (1992)104:600-607.). For many applications, this very long degradation time is undesirable as the persistence of polymer at a wound healing site may lead to a chronic inflammatory response in the patient. Slowly degrading PHB patches used to regenerate arterial tissue have been found to elicit a long term (greater than two years) macrophage response (Malm, et al., Eur. Surg. Res. 1994, 26:298-308). Macrophages were identified as being involved in the degradation of the PHB implants and this long term macrophage response appears to indicate the presence of persistent, slowly degrading particulate material originating from the implant. Indeed, although a PHB patch used for repair of the pericardium was not seen by ordinary light microscopy after 12 months implantation, small residual particulate material was observed by polarized light microscopy (Maim, et al., C. Scand. J Thor. Cardiovasc. Surg. 1992, 26; 9-14). It is not clear if this particulate material remains localized at the implant site, or may migrate throughout the body, causing unforeseen complications. The biological fate, or medical impact of this particulate material, cannot be predicted without long term study. In order to minimize potential problems associated with slowly degrading PHAs, it is advantageous to utilize resorbable materials with faster in vivo degradation rates.
There has been only one report describing the biocompatibility or in vivo degradation of any other PHA polymer in biomedical applications (WO 98/51812). U.S. Pat. No. 5,334,698 to Witholt, B. and Lageveen, R. G. mentions medical articles manufactured with an optically active polyester isolated from
Pseudomonas
oleovorans cells, however, no examples or discussion of fabrication or biocompatibility testing are cited, and no method

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polyhydroxyalkanoate compositions having controlled... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polyhydroxyalkanoate compositions having controlled..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyhydroxyalkanoate compositions having controlled... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3324100

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.