Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing oxygen-containing organic compound
Reexamination Certificate
2007-04-10
2007-04-10
Hoffman, Susan Coe (Department: 1655)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Preparing oxygen-containing organic compound
C435S141000
Reexamination Certificate
active
10600480
ABSTRACT:
Several novel PHA polymer compositions produced using biological systems include monomers such as 3-hydroxybutyrate, 3-hydroxypropionate, 2-hydroxybutyrate, 3-hydroxyvalerate, 4-hydroxybutyrate, 4-hydroxyvalerate and 5-hydroxyvalerate. These PHA compositions can readily be extended to incorporate additional monomers including, for example, 3-hydroxyhexanoate, 4-hydroxyhexanoate, 6-hydroxyhexanoate or other longer chain 3-hydroxyacids containing seven or more carbons. This can be accomplished by taking natural PHA producers and mutating through chemical or transposon mutagenesis to delete or inactivate genes encoding undesirable activities. Alternatively, the strains can be genetically engineered to express only those enzymes required for the production of the desired polymer composition. Methods for genetically engineering PHA producing microbes are widely known in the art (Huisman and Madison, 1998, Microbiology and Molecular Biology Reviews, 63: 21–53). These polymers have a variety of uses in medical, industrial and other commercial areas.
REFERENCES:
patent: 3275610 (1966-09-01), Coty
patent: 4477654 (1984-10-01), Holmes et al.
patent: 5480394 (1996-01-01), Ishikawa
patent: 5534432 (1996-07-01), Peoples et al.
patent: 5798235 (1998-08-01), Peoples et al.
patent: WO 99/14313 (1999-03-01), None
Braunegg, et al., “Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects,” Journal of Biotechnology 65:127-161 (1998).
Cao, et al., “Thermal and morphological study of fractionated poly(3-hydroxybutyric acid-co-3-hydroxyproponic acid,” Macromol. Chem. Phys. 198:3539-3557 (1997).
Choi & Lee, “Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation,” Appl. Microbiol. Biotechnol. 51:13-21 (1999).
Doi, “Microbial Synthesis, Physical Properties, and Biodegradability of Polyhydroxyalkanoates,” Macromol. Symp. 98:585-599 (1995).
Fukui, et al., “Purification and characterization of NADP-linked acetoacetyl-CoA reductase from Zoogloea ramigera I-16-M,” Biochimica Et Biophysica Acta 917:365-371 (1987).
Gerngross et al., “Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: Evidence for a required posttranslational modification for catalytic activity,” Biochemistry 33:9311-9320 (1994).
Hein, et al., “Biosynthesis of poly(4-hydroxybutric acid) by recombinant strains of Escherichia coli,” FEMS Microbiol. Lett. 153:411-418 (1997).
Hil & Courtright, “Induction of acyl coenzyme A synthetase and hydroxyacyl coenzyme A dehydrogenase during fatty acid degradation in Neurospora crassa.,” J. Bacteriol. 150(2):981-983 (1982).
Hofmeister & Buckel, “(R)-lactyl-CoA dehydratase from Clostridium propionicum. Stereochemistry of the dehydration of (R)-2-hydroxybutyryl-CoA to crotonyl-CoA,” Eur. J. Biochem. 206(2):547-552 (1992).
Jesudason & Marchessault, “Synthetic Poly[(R,S)-.beta.-hydroxyalkanoates] with Butyl and Hexyl Side Chains,” Macromolecules 27:2595-602 (1994).
Lee, et al. Appl. Microbiol. Biotechnol. 42(6): 901-909 (1995).
Lee, et al., “Copolymerization of gamma-valerolactone and beta-butyrolactone,” Eur. Polym. J. 34: 117-122 (1998).
Madison & Huisman, “Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic,” Microbiology and Molecular Biology Reviews 63:21-53 (1999).
Nawrath, et al., “Targeting of the polyhydroxybutyrate pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation,” Proc. Natl. Acad. Sci. USA 91:12760-64 (1994).
Peoples & Sinskey, “Poly-□-hydroxybutrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC),” J. Biol. Chem. 264:15298-15303 (1989).
Peoples, et al., “Biosynthetic Thiolase from Zoogloea ramigera,” J. Biol. Chem. 262:97-102 (1987).
Saito, et al., “An NADP-linked Acetoacetyl CoA reductase from Zoogloea ramigera,” Arch. Microbiol. 114:211-217 (1977).
Saito, et al., “Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate),” Polym. Int. 39:169-174 (1996).
Saito, et al., Intl. J. Biol. Macromol. 16(2): 99-104 (1994).
Senior & Dawes, “The regulation of Poly-.beta.-hydroxybutyrate Metabolism in Azobacter beijerinckii,” Biochem. J. 134:225-228 (1973).
Shimamura, et al., “Microbial Synthesis and Characterization of Poly(3-hydroxybutyrate-co-3-hydroxypropionate),” Macromolecules 27:4429-4435 (1994).
Sohling & Gottschalk, “Molecular analysis of the anaerobic succinate degradation pathway in Clostridium kluyveri,” J. Bacteriol. 178:871-880 (1996).
Steinbuchel & Gorenflo, “Biosynthetic and biodegradable polyesters from renewable resources: current state and prospects,” Macromol. Symp. 123:61-66 (1997).
Steinbuchel & Valentin, “Diversity of bacterial polyhydroxyalkanoic acids,” FEMS Microbiol. Lett. 128:219-28 (1995).
Valentin & Dennis, “Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose,” J. Biotechnol. 58:33-38 (1997).
Valentin, et al., “Identification of 4-hydroxyhexanoic acid as a new constituent of biosynthetic polyhydroxyalkanoic acids from bacteria,” Appl. Microbiol. Biotechnol. 40:710-16 (1994).
Valentin, et al., “Identification of 4-hydroxyvaleric acid as a constituent of biosynthetic polyhydroxyalkanoic acids from bacteria,” Appl. Microbiol. Biotechnol. 36:507-14 (1992).
Willadsen & Buckel, “Assay of 4-hydroxybutyryl-CoA dehydrates from Clostridium aminobutyricum,” FEMS Microbiol. Lett. 70:187-192 (1990).
Williams & Peoples, “Biodegradable plastics from plants,” Chemtech 26:38-44 (1996).
Yim, et al., “Synthesis of Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) by recombinant Escherichia coli,” Biotech. Bioengineering 49:495-503 (1996).
Jang and Rogers “Effect of levulinic acid on cell growth and poly-β-hydroxyalkanoate production byAlcaligenessp. SH-69”Biotechnology Letters18(2): 219-224 (1996).
Peoples Oliver P.
Skraly Frank A.
Hoffman Susan Coe
Metabolix Inc.
Pabst Patent Group LLP
LandOfFree
Polyhydroxyalkanoate biopolymer compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polyhydroxyalkanoate biopolymer compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyhydroxyalkanoate biopolymer compositions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3765940