Stock material or miscellaneous articles – Coated or structually defined flake – particle – cell – strand,... – Rod – strand – filament or fiber
Reexamination Certificate
2001-03-08
2003-09-23
Acquah, Samuel A. (Department: 1711)
Stock material or miscellaneous articles
Coated or structually defined flake, particle, cell, strand,...
Rod, strand, filament or fiber
C528S272000, C528S296000, C528S300000, C528S302000, C528S308000, C528S308600, C525S437000, C525S444000, C428S357000, C428S365000, C428S373000, C428S221000, C428S292100
Reexamination Certificate
active
06623853
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the production of polyethylene glycol (PEG) modified polyester compositions that are suitable for forming fibers. The present invention also relates to the making of yarns and fabrics from these copolyester fibers.
BACKGROUND OF THE INVENTION
Polyester filament is strong, yet lightweight, and has excellent elastic memory characteristics. Polyester fabric resists wrinkles and creases, retains its shape in garments, resists abrasions, dries quickly, and requires minimal care. Because it is synthetic, however, polyester is often considered to have an unacceptable appearance for garment purposes when the polyester is initially formed as a filament. Accordingly, polyester filaments require texturing to produce acceptable yarn and fabric characteristics with respect to appearance, hand, and comfort. Even then, polyester garments are often viewed unfavorably by consumers.
In pursuit of improved polyesters, various chemical modifications have been attempted to obtain desirable textile features. Unfortunately, some such treatments can produce unexpected or unwanted characteristics in the modified polyester. For example, polyethylene glycol enhances certain polyester properties, such as dye uptake, but diminishes other properties, especially those melt phase characteristics that are critical to filament spinning. Consequently, manufacturers have found that significant fractions of polyethylene glycol in copolyester can complicate-and even preclude-the commercial production of acceptable copolyester filaments. To gain commercial acceptance, modified polyesters must be compatible with commercial equipment with respect to melt-spinning, texturing, yarn spinning, fabric forming (e.g., weaving and knitting), and fabric finishing. This need for processing compatibility through conventional equipment has constrained the development of innovative polyester compositions.
To overcome the limitations of polyester compositions, polyester fibers are often blended with other kinds of fibers, both synthetic and natural. Perhaps most widely used in clothing are blended yarns and fabrics made of polyester and cotton. In general, blended fabrics of polyester and cotton are formed by spinning blended yarn from cotton fibers and polyester staple fibers. The blended yarns can then be woven or knitted into fabrics.
Cotton, like polyester, has certain advantages and disadvantages. Cotton is formed almost entirely of pure cellulose. Cotton fibers are typically about one inch long, but can vary from about one-half inch to more than two inches. Mature cotton fibers are characterized by their convolutions. Under a microscope, cotton appears as a twisted ribbon with thickened edges. Cotton is lightweight, absorbs moisture quickly and easily, and has a generally favorable texture (i.e., hand) when formed into fabrics. Cotton, however, lacks strength characteristics and elastic memory. Consequently, garments formed entirely of cotton require frequent laundering and pressing.
Blends of cotton and polyester fibers have found wide-ranging acceptance as they combine the desirable characteristics of each. Even so, there are continuing efforts to develop polyester filament, yarns, and fabrics that more closely resemble those of cotton, silk, rayon, or other natural fibers. One example is polyester microfibers, which are characterized by extremely fine filaments that offer exceptionally good aesthetics and hand, while retaining the benefits of polyester. Polyester microfibers, however, have proved to be difficult to dye because of their high degree of molecular orientation and crystallinity.
Accordingly, a need continues to exist for enhanced polyester compositions that have certain properties similar to those of cotton and other natural fibers, while retaining the advantages of polyester. One such composition and method for producing the same is disclosed by Nichols and Humelsine in commonly-assigned, pending U.S. patent application Ser. No. 09/141,665, filed Aug. 28, 1998, for Polyester Modified with Polyethylene Glycol and Pentaerythritol, now U.S. Pat. No. 6,294,254. U.S. patent application Ser. No. 09/141,665, which is incorporated entirely herein by reference, discloses a polyester composition that includes polyethylene terephthalate, polyethylene glycol, and chain branching agent in quantities sufficient to prepare a polyester composition that permits filament manufacture under substantially normal spinning conditions with a resulting filament that possesses physical characteristics superior to those of unmodified polyester filaments. As known to those familiar with the manufacture of filament, the equipment used to spin polyester filament is designed, built and adjusted to handle polymers whose melt viscosity falls within a certain range, typically between 500 and 4000 poise.
Another method for achieving enhanced polyester fibers is described by Branum in commonly-assigned, pending U.S. patent application Ser. No. 09/444,192, filed Nov. 19, 1999, for a Method of Preparing Polyethylene Glycol Modified Polyester Filaments, now U.S. Pat. No. 6,454,982. U.S. patent application Ser. No. 09/444,192, which, as noted, is incorporated entirely herein by reference, describes copolymerizing polyethylene glycol, which typically makes up between about 4 percent and 20 percent by weight of the resulting copolyester, into polyethylene terephthalate in the melt-phase to a relatively low intrinsic viscosity (i.e., a viscosity that will not support filameent spinning). The resulting PEG-modified polyester is then further polymerized in the solid phase until the copolyester is capable of achieving a melt viscosity sufficient to spin filaments. By introducing a solid state polymerization (SSP) step, this method reduces the need to add branching agents, such as pentaerythritol, to increase the melt-phase polymerization rate and thereby achieve an intrinsic viscosity that facilitates the spinning of filaments.
A related method for achieving enhanced polyester fibers is described by Branum in commonly-assigned, pending application Ser. No. 09/484,822, filed Jan. 18, 2000, for Polyethylene Glycol Modified Polyester Fibers and Method for Making the-Same, now U.S. Pat. No. 6,291,066. U.S. patent application Ser. No. 09/484,822, which is a continuation-in-part of the aforementioned application Ser. No. 09/444,192 and, as noted, is also incorporated entirely herein by reference, describes copolymerizing polyethylene glycol and branching agent into polyethylene terephthalate in the melt-phase to form a copolyester composition having an intrinsic viscosity of at least about 0.67 dl/g. Thereafter, copolyester filaments can be spun from the copolyester composition.
A related method for making nonwoven fabrics formed from such enhanced polyester fibers is described by Carnes and Branum in commonly-assigned, pending application Ser. No. 09/761,446, filed Jan. 17, 2001, for Nonwoven Fabrics Formed From Polyethylene Glycol Modified Polyester Fibers And Method For Making The Same. U.S. patent application Ser. No. 09/761,446, which is a continuation-in-part of the aforementioned application Ser. No. 09/484,822 and, as noted, is also incorporated entirely herein by reference, describes copolymerizing polyethylene glycol and branching agent into polyethylene terephthalate in the melt-phase or, alternatively in the solid-phase, to form a copolyester composition, which is then formed into copolyester fibers. Thereafter, copolyester fibers are formed into nonwoven fabrics.
With the exception of Ser. No. 09/141,665, these commonly-assigned applications relate to copolyester compositions having relatively low amounts of branching agent (e.g., below about 500 ppm pentaerythritol). In contrast, U.S. application Ser. No. 09/141,665 relates to copolyester compositions including branching agents in an amount sufficient to raise the melt viscosity of the composition to a level that permits filament manufacture under conditions that are substantially the same as those under which filament can be formed from un
Branum James Burch
Carnes Keith James
Humelsine Billy Mack
Nichols Carl Steven
Acquah Samuel A.
Summa Rallan, P.A.
Wellman, Inc.
LandOfFree
Polyethylene glycol modified polyester fibers and method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polyethylene glycol modified polyester fibers and method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyethylene glycol modified polyester fibers and method for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3000975