Polyester resin and process for producing molded product...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C521S048000, C525S450000

Reexamination Certificate

active

06506852

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a process for producing a polyester resin having increased molecular weight and improved processability by subjecting a polyester resin having relatively low molecular weight to a bond reaction using a small amount of a binder and a slight amount of a catalyst, and to a process for producing a polyester resin molded product. More particularly, the present invention relates to a process for producing a polyester resin having increased molecular weight and improved processability by restoring and improving a recovered or recycled polyester molded product with reduced molecular weight and physical properties, and a process for producing a polyester resin molded product having improved basic physical properties, mechanical characteristics, and the like.
BACKGROUND ART
Straight-chain aromatic saturated polyesters, such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene-2,6-naphthalene carboxylate (PEN), have excellent physical properties, and are widely used as fibers, films, plastics and the like. In the field of plastics, these kinds of polyesters are widely used as high performance resin materials for molded products for automobiles, machine parts, electric and electronic materials, building materials, containers, various industrial products and the like.
In recent years, with a view to saving resources and protecting the environment, the need to reutilize used plastic products recovered from factory production lines or the general consumer market has been recognized worldwide. Also, the recycling of used bottles, films and the like which are made of polyester has been positively progressing. However, such crystalline polyester has practical problems in that great decreases in molecular weight easily occur, and there is a strong tendency for the number of free carboxyl groups at the molecule terminals to increase due to the thermal history of mold working. This has hindered the development of reutilization techniques for recovered products. Since the molecular weight of recovered used polyester is decreased as compared with new chips, even flakes (crushed materials) derived from large amounts of recovered PET bottles, for example, have molecular weights substantially reduced by half. Therefore, using this as a base resin for reutilization will cause poor processability, where the original PET bottles cannot be made, but only monofilaments that can be formed with even low molecular weights may be formed. Thus, the current state of reutilization is limited to a narrow range applications.
As approaches for solving this problem, methods of restoring molecular weight by a solid phase polymerization of polyesters, of reacting a chain extender and polyester terminal groups, of adding other resins such as an elastomer to support mechanical characteristics, and the like are known.
As the chain extender, practical applications of compounds having functional groups, such as isocyanate, oxazoline, epoxy, aziridine, or carboimide have been proposed. However, practical compounds are limited because of strict restrictions in reactivity, heat resistance, stability and the like. Of these, epoxy compounds are relatively useful, and blends of monoepoxy compounds (Japanese Patent Laid-open No. Sho-57-161124), of diepoxy compounds (Japanese Patent Laid-open No. Hei-7-166419, Japanese Patent Publication No. Sho-48-25074, Japanese Patent Publication No. Sho-60-35944, and the like) are disclosed. However, there have been various problems in reaction rate, gel formation, melt viscosity, compatibility, heat stability, physical properties of the molded product, and the like.
On the other hand, a method of increasing the molecular weight of polyester by melting and mixing the recovered polyester with a bifunctional epoxy resin and a steric hindrance type hydroxyphenyl alkyl phosphorous acid ester hap been proposed (Japanese Patent Laid-open No. Hei-8-508776). Although this method may provide a relatively fast reaction rate, the steric hindrance type hydroxyphenyl alkyl phosphorous acid ester used is expensive, and there is a problem with practical use in the industry where low recovery and recycling costs are required. There have also been proposed methods of blending rubber or elastomers with the polyester, but in such case, there have been difficulties in compatibility, heat resistance, modulus of elasticity and the like.
DISCLOSURE OF THE INVENTION
An object of the present invention is therefore to provide a process for producing polyester resin pellets having increased molecular weight and molecular weight distribution and improved processability using a polyester resin having a relatively low molecular weight as a raw material, and a process for producing a molded product of the polyester resin.
As a result of extensive investigations to solve the above-mentioned problems, the present inventors have discovered that the above-mentioned object can be attained in an industrially advantageous fashion by blending a specific epoxy compound as a binder and a bond reaction catalyst with a saturated polyester followed by heat fusion to reach the completion of the present invention.
That is, the present invention provides, in one aspect thereof, a method for producing a high molecular weight polyester having swell of 1-200%, characterized by heating a mixture consisting of: (a) 100 parts by weight of a linear saturated polyester; (b) 0.3-10 parts by weight of a mixture, as a coupling agent, composed of (1) 0-100 percent by weight of a bifunctional epoxide ingredient containing 2 epoxide groups per molecule and (2) 100-0 percent by weight of a polyfunctional epoxide ingredient containing 3 and more epoxide groups per molecule; and (c) 0.01-5 parts by weight of metal salt of carboxylic acid as a catalyst for coupling reaction, at a temperature higher than a melting point of said polyester resin.
Further, the present invention provides the above mentioned production process, characterized in that metal salt is selected from a group consisting of a sodium salt and a manganese salt of carboxylic acid.
Also, the present invention provides the above mentioned production process, characterized in that the linear saturated polyester is a recycled molded product of polyester and having an inherent viscosity of 0.30-0.90 dl/g.
Still yet, the present invention provides the above mentioned production process, characterized in that the epoxide ingredient containing 2 epoxide groups per molecule contains at least one selected from a group consisting of aliphatic polyethyleneglycol diglycidylether, aromatic bisphenol A diglycidylether and its pre-condensate.
Also, the present invention provides the above mentioned production process, characterized in that the epoxide ingredient containing 3 epoxide groups per molecule contains at least one selected from a group consisting of aliphatic trimethylolpropane triglycidylether, an aromatic phenol novolac epoxy resin, a cresol novolac epoxy resin and bisresorcinoltetraglycidylether.
Additionally, the present invention provides a method of production of a high molecular weight polyester having swell of 1-200%, characterized by heating a mixture consisting of: (a) 100 parts by weight of a linear saturated polyester; (b) 0.3-10 parts by weight of a mixture, as a coupling agent, composed of (1) 0-100 percent by weight of a bifunctional epoxide ingredient containing 2 epoxide groups per molecule and (2) 100-0 percent by weight of a polyfunctional epoxide ingredient containing 3 and more epoxide groups per molecule; and (c) at least one coupling reaction catalyst selected from a group consisting of (1) carboxylate, carbonate, bicarbonate of alkali metal, (2) carboxylate of alkaline earth metal, (3) carboxylate of aluminium, zinc or manganese, (4) manganese carbonate, at a temperature higher than a melting point of said polyester resin.
Further, the present invention provides a polyester resin produced according to the above mentioned production process.
Also, the present invention provides a method for pr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polyester resin and process for producing molded product... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polyester resin and process for producing molded product..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyester resin and process for producing molded product... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3062256

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.