Polycarbonates

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From phenol – phenol ether – or inorganic phenolate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S196000

Reexamination Certificate

active

06743888

ABSTRACT:

BACKGROUND
This invention is generally directed to imaging members containing polycarbonates, and more specifically, the present invention is directed to multilayered photoconductive imaging members containing charge, especially hole transport binders comprised of crosslinked polycarbonates, which can be formed from the reaction of novel polycarbonates containing pendant hydroxyl groups along the polymer backbone, and functional agents comprised of, for example, isocyanates.
A number of advantages are associated with the present invention in embodiments thereof, such as excellent electrical characteristics, the provision of robust photoconductive imaging members wherein the life thereof is increased from about 170 kilocycles to over 500 kilocycles, and more specifically, from about 255 to about 510 kilocycles; compatibility with hole transport components, such as aryl amines; resistance to solvents, such as methylene chloride, tetrahydrofuran, and chlorobenzene, and substantial resistant to the disintegration of bias charging rolls. In embodiments of the present invention, the imaging members exhibit excellent cyclic/environmental stability, and substantially no adverse changes in their performance over extended time periods, and excellent resistance to mechanical abrasion, and therefore extended photoreceptor life. The aforementioned photoresponsive, or photoconductive imaging members can be positively or negatively charged when the photogenerating layer is situated between the charge transport layer and the substrate.
Processes of imaging, especially xerographic imaging and printing, including digital, are also encompassed by the present invention. More specifically, the layered photoconductive imaging members of the present invention can be selected for a number of different known imaging and printing processes including, for example, color processes, digital imaging process, digital printers, PC printers, and electrophotographic imaging processes, especially xerographic imaging and printing processes wherein charged latent images are rendered visible with toner compositions of an appropriate charge polarity. The imaging members of the present invention are in embodiments sensitive in the wavelength region of, for example, from about 500 to about 900 nanometers, and more specifically, from about 650 to about 850 nanometers, thus diode lasers can be selected as the light source. Moreover, the Imaging members of this invention are useful for color xerographic systems.
REFERENCES
Layered photoresponsive imaging members have been described in numerous U.S. patents, such as U.S. Pat. No. 4,265,990, the disclosure of which is totally incorporated herein by reference, wherein there is illustrated an imaging member comprised of a photogenerating layer, and an aryl amine hole transport layer. Examples of photogenerating layer components include trigonal selenium, metal phthalocyanines, vanadyl phthalocyanines, and metal free phthalocyanines. Additionally, there is described in U.S. Pat. No. 3,121,006, the disclosure of which is totally incorporated herein by reference, a composite xerographic photoconductive member comprised of finely divided particles of a photoconductive inorganic compound dispersed in an electrically insulating organic resin binder. The binder materials disclosed in the '006 patent comprise a material which is incapable of transporting for any significant distance injected charge carriers generated by the photoconductive particles.
The use of perylene pigments as photoconductive substances is also known. There is thus described in Hoechst European Patent Publication 0040402, DE3019326, filed May 21, 1980, the use of N,N′-disubstituted perylene-3,4,9,10-tetracarboxyldiimide pigments as photoconductive substances. Specifically, there is, for example, disclosed in this publication N,N′-bis(3-methoxypropyl)perylene-3,4,9,10-tetracarboxyl-diimide dual layered negatively charged photoreceptors with improved spectral response in the wavelength region of 400 to 700 nanometers. A similar disclosure is presented in Ernst Gunther Schlosser,
Journal of Applied Photographic Engineering
, Vol. 4, No. 3, page 118 (1978). There are also disclosed in U.S. Pat. No. 3,871,882 photoconductive substances comprised of specific perylene-3,4,9,10-tetracarboxylic acid derivative dyestuffs. In accordance with this patent, the photoconductive layer is preferably formed by vapor depositing the dyestuff in a vacuum. Also, there are specifically disclosed in this patent dual layer photoreceptors with perylene-3,4,9,10-tetracarboxylic acid diimide derivatives, which have spectral response in the wavelength region of from 400 to 600 nanometers. Also, in U.S. Pat. No. 4,555,463, the disclosure of which is totally incorporated herein by reference, there is illustrated a layered imaging member with a chloroindium phthalocyanine photogenerating layer. In U.S. Pat. No. 4,587,189, the disclosure of which is totally incorporated herein by reference, there is illustrated a layered imaging member with, for example, a perylene, pigment photogenerating component. Both of the aforementioned patents disclose an aryl amine component, such as N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine dispersed in a polycarbonate binder, as a hole transport layer. The above components, such as the photogeneraling compounds and the aryl amine charge transport, can be selected for the imaging members of the present invention.
SUMMARY
It is a feature of the present invention to provide novel polycarbonates and imaging members thereof with many of the advantages illustrated herein, such as for example extended life, and excellent Imaging performance.
A further feature of the present invention is the provision of novel polycarbonates, and improved layered photoresponsive imaging members which are responsive to near infrared radiation exposure and which imaging members in embodiments possess excellent wear resistance.
In a further feature of the present invention there are provided imaging members containing crosslinked binder layers which are compatible with transport layer components, and more specifically, wherein the polycarbonate binder, inclusive of the crosslinked components thereof, are miscible with hole transport molecules, such as arylamines, and wherein the photoconductive imaging member possesses excellent electrical performance including high charge acceptance, low dark decay and low residual charge.
Moreover, in another feature of the present invention there are provided abrasion resistant photoconductive imaging members, and wherein the imaging member corrosive erosion by bias charging rolls and mechanical erosion by cleaning blades is avoided or minimized.
Aspects of the present invention relate to novel polycarbonates; a polycarbonate comprised of a repeating segment represented by Formula (I)
wherein R
1
is selected from the group consisting of hydrogen, alkyl, and aryl; R
2
represents a divalent linkage selected from the group consisting of alkylene optionally containing one or more heteroatoms of halogen, nitrogen, oxygen, sulfur, silicon, or phosphorus, arylalkylene, and arylene; Ar
1
and Ar
2
each independently represent aromatic groups; and P represents a hydrogen atom, or a hydroxyl protective group; a polycarbonate wherein arylene is selected from the group consisting of
and wherein the arylene optionally contains a substituent selected from the group consisting of hydrogen, halogen, alkyl of from 1 to about 15 carbon atoms, halogenated alkyl of 1 to about 15 carbons, or alkyl containing one or more heteroatoms of nitrogen, oxygen, sulfur, silicon, or phosphorus; a polycarbonate containing at least one repeating segment represented by Formula (II)
wherein A is a divalent hydrocarbon optionally containing from about 2 to about 30 carbon atoms, or optionally a divalent hydrocarbon linkage containing from about 2 to about 30 carbon atoms further containing a heteroatom of oxygen, nitrogen, sulfur, silicon, or phosphorus and wherein R
1

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polycarbonates does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polycarbonates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polycarbonates will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3332726

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.