Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From phenol – phenol ether – or inorganic phenolate
Reexamination Certificate
2002-01-04
2003-10-07
Boykin, Terressa M. (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
From phenol, phenol ether, or inorganic phenolate
C528S198000, C528S010000
Reexamination Certificate
active
06630562
ABSTRACT:
BACKGROUND OF THE INVENTION
1) Field of the Invention
The present invention relates to a polycarbonate resin with good moldability and good transparency and furthermore excellent abrasion resistance and excellent weather resistance. The polycarbonate resin is applicable to uses of general molding of various materials such as medical instrument parts, food vessels, drinking bottles, gas permeation membranes, binders for dye and pigment, toys, materials for window and building, safeguarding materials, office automation apparatuses and portable telephones and boxes, and particularly, suitable to the production of optical articles such as optical discs including compact disc, laser disc, optical card, magneto optical disc, digital versatile disc and near field recording optical disc, optical lenses including pick-up lens, spectacle lens and camera lens, optical films and optical sheets including cover layer for near field recording medium and optical filter, optical information transmission media including optical fiber and optical waveguide and photoconductive boards.
2) Prior Art
Now, a majority of polycarbonate resins which have been produced is a bisphenol A type polycarbonate used 2,2-bis(4-hyroxylphenyl) propane (so-called “bisphenol A”) as a raw material. The bisphenol A type polycarbonate resin is a polycarbonate resin with good balance of cost, heat resistance and mechanical strength. Recently, a polycarbonate resin with more excellent properties has been desired with extension of the range of its use. Thus, polycarbonate resins having various structures have been developed. However, a polycarbonate with more excellent properties or more particular properties has been required from the market. Thus, development of novel polycarbonate has been necessitated.
As one of them, a siloxane copolymerization polycarbonate as a modified polycarbonate improved mold releasing and flowability has been developed (Japanese Patent Kokai (Laid-open) Nos. 50-29695, 3-079626, 5-155999, 7-258398 and 7-165897).
Further, also a graft type siloxane copolymerization polycarbonate and a resin composition thereof having more excellent abrasion resistance than the above-mentioned siloxane copolymerization polycarbonate have been developed (Japanese Patent Kokai (Laid-open) Nos. 10-158379 and 10-158499).
On the other hand, also a polycarbonate improved abrasion resistance and dust proof has been developed by using a polycarbonate having a particular fluorene structure (not slipping of silicone chain) (Japanese Patent Kokai (Laid-open) No. 8-134198).
Although the above-mentioned polycarbonates exhibited excellent abrasion resistance under ordinary conditions, abrasion resistance after severe environmental tests such as outdoor exposure was not sufficient, so that it was a room for further improvement.
Further, the above-mentioned polycarbonates were used in a wet molding, non-halogen solvents came to be used as a solvent from the aspect of environmental problems. Thus, also a polycarbonate with good solubility to non-halogen solvents such as tetrahydrofuran has been required.
SUMMARY OF THE INVENTION
From the viewpoint of the above-mentioned situation, an object of the present invention is to provide a polycarbonate resin with both excellent weather resistance and excellent abrasion resistance which dissolves in non-halogen solvents.
As a result of extensive studies to solve above-mentioned prior art problems, the inventors have found that a polycarbonate resin having a particular fluorene structure and a particular graft polysiloxane structure in a repeating unit exhibits both excellent weather resistance and excellent abrasion resistance and dissolves in non-halogen solvents, and accomplished the present invention.
The present invention provides a polycarbonate resin obtained by reaction of a compound represented by the following general formula (A) and a compound represented by the following general formula (B) or a compound represented by the general formula (A), a compound represented by the formula (B) and a compound represented by the following general formula (C) with a carbonic acid ester-forming compound, wherein an amount of a compound represented by the general formula (B) is 10 to 50% by weight to total amount of a compound represented by the general formula (A), a compound represented by the general formula (B) and a compound represented by the general formula (C) and an intrinsic viscosity [&eegr;] of said polycarbonate resin is 0.2 to 2.0 dl/g;
wherein R
1
, R
2
, R
3
, R
4
, R
5
, R
6
, R
7
and R
8
are, each independently, a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms or an aralkyl group having 7 to 17 carbon atoms and when said group has carbon atom, said group can have an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms as a substituent(s);
wherein R
9
, R
10
, R
11
, R
12
, R
13
and R
14
are, each independently, a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms or an aralkyl group having 7 to 17 carbon atoms and when said group has carbon atom, said group can have an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms as a substituent(s); X is a homopolyer or a random copolymer of —SiO(R
15
) (R
16
)— and/or —SiO(R
17
) (R
18
)— having an average polymerization degree of 3 to 200; R
15
, R
16
, R
17
and R
18
are, each independently, a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an aralkyl group having 7 to 17 carbon atoms or an organic group (M) having an hyroxyphenyl group and when said group has carbon atom, said group can have an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms as a substituent(s) and average 1 to 3 organic group (M) having an hyroxyphenyl group is (are) indispensably contained in R
15
, R
16
, R
17
and R
18
;
wherein R
19
and R
20
are, each independently, a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an aralkyl group having 7 to 17 carbon atoms or a group forming a carbon ring or a heterocycle in optional combination of R
19
and R
20
and when said group has carbon atom, said group can have a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms as a substituent(s) and Y is;
wherein R
21
, R
22
, R
23
and R
24
are, each independently, a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, a carbon ring having 3 to 6 carbon atoms or a heterocycle having 3 to 6 carbon atoms in optional combination of R
21
, R
22
, R
23
and R
24
and when said group has carbon atom, said group can have a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms as a substituent(s) and a is an integer of 0 to 20.
Further, the present invention provides a polycarbonate resin composition comprising of a mixture of the above-mentioned polycarbonate resin and a polyorganosiloxane.
DETAILED DESCRIPTION OF THE INVENTION
The invention will be described in detail below.
The polyc
Adachi Takahiro
Kanagawa Tatsuya
Ogawa Noriyoshi
Boykin Terressa M.
Mitsubishi Gas Chemical Company Inc.
Sughrue & Mion, PLLC
LandOfFree
Polycarbonate resin does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polycarbonate resin, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polycarbonate resin will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3120155