Drug – bio-affecting and body treating compositions – Conjugate or complex of monoclonal or polyclonal antibody,...
Reexamination Certificate
2001-02-26
2004-11-30
Celsa, Bennett (Department: 1639)
Drug, bio-affecting and body treating compositions
Conjugate or complex of monoclonal or polyclonal antibody,...
C530S389100, C530S391100
Reexamination Certificate
active
06824782
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the chemical modification of single chain polypeptides by means of covalent attachment of strands of poly(ethylene glycol) PEG and similar poly(alkylene oxides) to single chain polypeptide binding molecules that have the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules have reduced immugenicity and antigenicity as well as having a longer halflife in the bloodstream as compared to the parent polypeptide. These beneficial properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications. The invention also relates to multivalent antigen-binding molecules capable of PEGylation. Compositions of, genetic constructions for, methods of use, and methods for producing PEGylated antigen-binding proteins are disclosed.
2. Description of Related Art
Antibodies are proteins generated by the immune system to provide a specific molecule capable of complexing with an invading molecule, termed an antigen. Natural antibodies have two identical antigen-binding sites, both of which are specific to a particular antigen. The antibody molecule “recognizes” the antigen by complexing its antigen-binding sites with areas of the antigen termed epitopes. The epitopes fit into the conformational architecture of the antigen-binding sites of the antibody, enabling the antibody to bind to the antigen.
The antibody molecule is composed of two identical heavy and two identical light polypeptide chains, held together by interchain disulfide bonds. The remainder of this discussion on antibodies will refer only to one pair of light/heavy chains, as each light/heavy pair is identical. Each individual light and heavy chain folds into regions of approximately 110 amino acids, assuming a conserved three-dimensional conformation. The light chain comprises one variable region (V
L
) and one constant region (C
L
), while the heavy chain comprises one variable region (V
H
) and three constant regions (C
H
1, C
H
2 and C
H
3). Pairs of regions associate to form discrete structures. In particular, the light and heavy chain variable regions associate to form an “Fv” area which contains the antigen-binding site. The constant regions are not necessary for antigen binding and in some cases can be separated from the antibody molecule by proteolysis, yielding biologically active (i.e., binding) variable regions composed of half of a light chain and one quarter of a heavy chain.
Further, all antibodies of a certain class and their F
ab
fragments (i.e., fragments composed of V
L
, C
L
, V
H
, and C
H
1) whose structures have been determined by x-ray crystallography show similar variable region structures despite large differences in the sequence of hypervariable segments even when from different animal species. The immunoglobulin variable region seems to be tolerant towards mutations in the antigen-binding loops. Therefore, other than in the hypervariable regions, most of the so-called “variable” regions of antibodies, which are defined by both heavy and light chains, are, in fact, quite constant in their three dimensional arrangement. See for example, Huber, R.,
Science
233:702-703 (1986)).
Recent advances in immunobiology, recombinant DNA technology, and computer science have allowed the creation of single polypeptide chain molecules that bind antigen. These single-chain antigen-binding molecules (“SCA”) or single-chain variable fragments of antibodies (“sFv”) incorporate a linker polypeptide to bridge the individual variable regions, V
L
and V
H
, into a single polypeptide chain. A description of the theory and production of single-chain antigen-binding proteins is found in Ladner et al., U.S. Pat. Nos. 4,946,778, 5,260,203, 5,455,030 and 5,518,889. The single-chain antigen-binding proteins produced under the process recited in the above U.S. patents have binding specificity and affinity substantially similar to that of the corresponding Fab fragment. A computer-assisted method for linker design is described more particularly in Ladner et al., U.S. Pat. Nos. 4,704,692 and 4,881,175, and WO 94/12520.
The in vivo properties of sFv (SCA) polypeptides are different from MAbs and antibody fragments. Due to their small size, sFv (SCA) polypeptides clear more rapidly from the blood and penetrate more rapidly into tissues (Milenic, D. E. et al.,
Cancer Research
51:6363-6371(1991); Colcher et al.,
J. Natl. Cancer Inst.
82:1191 (1990); Yokota et al.,
Cancer Research
52:3402 (1992)). Due to lack of constant regions, sFv (SCA) polypeptides are not retained in tissues such as the liver and kidneys. Due to the rapid clearance and lack of constant regions, sFv (SCA) polypeptides will have low immunogenicity. Thus, sFv (SCA) polypeptides have applications in cancer diagnosis and therapy, where rapid tissue penetration and clearance, and ease of microbial production are advantageous.
A multivalent antigen-binding protein has more than one antigen-binding site. A multivalent antigen-binding protein comprises two or more single-chain protein molecules. Enhanced binding activity, di- and multi-specific binding, and other novel uses of multivalent antigen-binding proteins have been demonstrated. See, Whitlow, M., et al.,
Protein Engng.
7:1017-1026 (1994); Hoogenboom, H. R.,
Nature Biotech.
15:125-126 (1997); and WO 93/11161.
Ladner et al. also discloses the use of the single chain antigen binding molecules in diagnostics, therapeutics, in vivo and in vitro imaging, purifications, and biosensors. The use of the single chain antigen binding molecules in immobilized form, or in detectably labeled forms is also disclosed, as well as conjugates of the single chain antigen binding molecules with therapeutic agents, such as drugs or specific toxins, for delivery to a specific site in an animal, such as a human patient.
Whitlow et al. (
Methods: A Companion to Methods in Enzymology
2(2):97-105 (June, 1991)) provide a good review of the art of single chain antigen binding molecules and describe a process for making them.
In U.S. Pat. No. 5,091,513, Huston et al. discloses a family of synthetic proteins having affinity for preselected antigens. The contents of U.S. Pat. No. 5,091,513 are incorporated by reference herein. The proteins are characterized by one or more sequences of amino acids constituting a region that behaves as a biosynthetic antibody binding site (BABS). The sites comprise (1) noncovalently associated or disulfide bonded synthetic V
H
and V
L
regions, (2) V
H
-V
L
or V
L
-V
H
single chains wherein the V
H
and V
L
are attached to a polypeptide linker, or (3) individual V
H
or V
L
domains. The binding domains comprises complementarity determining regions (CDRs) linked to framework regions (FRs), which may be derived from separate immunoglobulins.
U.S. Pat. No. 5,091,513 also discloses that three subregions (the CDRs) of the variable domain of each of the heavy and light chains of native immunoglobulin molecules collectively are responsible for antigen recognition and binding. These CDRs consist of one of the hypervariable regions or loops and of selected amino acids or amino acid sequences disposed in the framework regions that flank that particular hypervariable region. It is said that framework regions from diverse species are effective in maintaining CDRs from diverse other species in proper conformation so as to achieve true immunochemical binding properties in a biosynthetic protein.
U.S. Pat. No. 5,091,513 includes a description of a chimeric polypeptide that is a single chain composite polypeptide comprising a complete antibody binding site. This single chain composite polypeptide is described as having a structure patterned after tandem V
H
and V
L
domains, with a carboxyl terminal of one attached through an amino acid sequence to the amino terminal of the other. It thus comprises an amino acid sequence that is homologous t
Filpula David R.
Lee Lihsyng Stanford
Shorr Robert G. L.
Whitlow Marc
Celsa Bennett
Enzon Inc.
Muserlian Lucas and Mercanti
LandOfFree
Polyalkylene oxide-modified single chain polypeptides does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polyalkylene oxide-modified single chain polypeptides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyalkylene oxide-modified single chain polypeptides will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3316423