Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...
Reexamination Certificate
1999-09-09
2002-03-05
Wu, David W. (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Polymers from only ethylenic monomers or processes of...
C526S320000, C526S232100, C526S292100, C526S260000, C524S425000, C524S437000, C524S439000, C524S440000, C524S441000, C524S443000, C524S445000, C524S449000
Reexamination Certificate
active
06353068
ABSTRACT:
RELATED APPLICATIONS
This application claims priority to German application No. 198 41 559.1, filed Sep. 11, 1998, herein incorporated by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to (meth)acryloxy-functional polyacrylates obtained by transesterification and to their use as degassing agents for paints and coatings, especially radiation-curing coatings.
2. Description of the Related Art
The prior art discloses the use of polyacrylates of a variety of compositions as degassing agents. Homopolymers of butyl acrylate and copolymers of ethyl acrylate and ethylhexyl acrylate are used in particular for this purpose. Exemplary applications are the degassing of 2-component epoxy flooring compounds (Pitture Vernici Eur. (1997), 73, 34-38) or powder coating systems (inter alia, EP-A-0 561 543). In many cases, however, the degassing action of such agents is inadequate.
The use of relatively hydrophobic polyacrylates with higher alkyl radicals and/or additional (meth)acryloxy groups as degassing agents for paints and coatings, on the other hand, has not been described.
The invention relates to the use of such special polyacrylates for degassing coatings, especially radiation-curing (UV/EB) coatings. By adding such polyacrylates it is possible to avoid the coarsely and finely disperse air bubbles incorporated into such coatings, without adversely affecting other properties of such coatings.
The increasing demands for more ecologically acceptable, emissions-reduced coating systems which can also be processed economically brought to the fore the recent technology of UV- or EB-induced radiation curing. In this technology, systems based on free-radically curable acrylates, which are discussed in more detail below, have acquired the greatest importance. Such systems are known and are described, for example, in “UV and EB Curing Formulation for Printing Inks, Coatings and Paints” (R. Holeman, P. Oldring, London 1988).
Principal binders are oligomeric acrylate compounds based on polyethers, polyesters, epoxy resins or polyurethanes. The average molar masses are customarily within the range from 200 to 4000 g/mol. The required processing viscosity is established if desired by adding low-viscosity monofunctional or multifunctional monomers, such as hexanediol diacrylate, tripropylene glycol diacrylate, trimethylolpropane triacrylate, etc., which act as reactive diluents. The curing mechanism is a radiation-induced, free-radical polymerization. In the case of UV curing, the polymerization is started by the photoreaction of an initiator. Examples of such photoinitiators are acylphosphine oxide, acetophenone and benzophenone derivatives, and thioxanthone. Amine derivatives are sometimes added as synergists for the purpose of acceleration. After coating, usually by flow, roller or spray techniques, and irradiation with UV light or electron beams, materials coated in this way can immediately be processed further or packed.
There is a causal link between the preparation of such systems, and even more so their processing properties, and the additives employed. Degassing in particular is a very critical problem, since only a few seconds elapse between application and the subsequent radiation-induced drying. Consequently, in many cases, finely (5 to 50 &mgr;m) dispersed spherical air bubbles remain in the film, resulting in a distinct loss of gloss. Radiation-curing coatings of this kind possess a very low solvency, so that the addition of known degassing substances (e.g., silicone fluids or organically modified siloxanes) can very easily result in unwanted clouding, flow defects, craters, or reduction in gloss. The addition of silicone-based additives also has a strong negative impact on the overcoatability of such coatings, so preventing the construction of multicoat systems or at least making it much more difficult. The addition of silicone-based additives is particularly undesirable in the case of flow coating applications, since it is generally not possible to prevent breaks in the curtain. Additives tried and tested by those skilled in the art nowadays include the addition of small amounts of methyl ethyl ketone or butyl acetate, although this conflicts with the desire to formulate low-emission systems—or, ideally, emission-free systems. These solvents must largely be removed from the film prior to irradiation.
Therefore, there is a need in the art for silicone-free additives which are easy to incorporate and which, when added at low concentrations, eliminate the microdisperse air or suppress its formation without adversely affecting other properties of the coating (gloss, overcoatability, intercoat adhesion, and resistance to solvents and water). At the same time, such additives should be largely independent of the nature and composition of the coatings to which they are added in order to improve said properties and hence should be capable of universal application.
OBJECT OF THE INVENTION
It is the object of the invention to find compounds which meet the above requirements and are effective when added in small amounts.
SUMMARY OF THE INVENTION
This object is achieved in accordance with the invention. Accordingly, this invention provides for polyacrylates having an average molecular weight of from 1000 to 10,000 and the general formula
where
R
4
is the radical of a known chain regulator or initiator,
R
1
is identical or different and is an alkyl radical,
R
2
is identical or different and is a saturated or unsaturated alkyl radical of 12 to 22 carbon atoms,
R
3
is a hydrocarbon radical which carries at least one (meth)acryloxy group,
a is from 10 to 50,
b is from 3 to 20,
c is from 0 to 10,
and the ratio a:b+c is from about 0.25 to about 4 and the ratio b:c is from about 1:0 to about 1:0.7. This invention also provides for the use of those polyacrylates as degassing agents for paints and coatings.
DETAILED DESCRIPTION OF THE INVENTION
According to the prior art, compounds of this kind are obtainable by copolymerization and/or subsequent transesterification reactions. Firstly, the respective synthesis route is guided by economic considerations; secondly, however, transesterification reactions on polyacrylates having 1 to 4 carbon atoms are advantageous specifically for obtaining polymers with a narrow distribution, in the case of the desired incorporation of crosslinkable (meth)acryloxy functions, and for minimizing any residual monomer presence and associated physiological risks.
In the fairly recent past, transesterification products of this kind have been described on a number of occasions, such as, for example, in DE-A-38 42 201 or DE-A-38 42 202 and in DE-A-42 36 337. These transesterification products, for example, have significant advantages over the analogous copolymers, such as a substantially more uniform molecular weight distribution. They are largely free from monomeric fractions. Only by using the transesterification process is it possible to prepare polyacrylates whose alcoholic ester component includes unsaturated double bonds, without the formation of high-molecular-mass byproducts. For instance, it is possible without complications to transesterify polyacrylates with oleyl alcohol and at the same time with other hydroxy compounds.
Surprisingly, it has now also been found that this applies to hydroxy-functional (meth)acrylates as well. Copolymeric structures obtained in this way are novel. They are preferably obtained by polymer-analogous transesterification reactions on polyacrylates having 1 to 4 carbon atoms.
The transesterification is performed in each case on polyacrylates whose alkyl groups have preferably 1 to 4 carbon atoms. A particularly preferred alkyl group is the methyl group. The alkyl group is selected primarily in accordance with the boiling point of the corresponding alcohols.
In the case of the polyacrylates to be used in accordance with the invention, then, the transesterification component a) used comprises saturated or unsaturated alcohols of 12 to 22 carbon atoms. Particularly suitable alcohols are the saturated
Dietz Thomas
Esselborn Eberhard
Psiorz Christian
Reuter Ellen
Schick Ute
Frommer & Lawrence & Haug LLP
Th. Goldschmidt AG
Wu David W.
Zalukaeva Tanya
LandOfFree
Polyacrylates and their use as degassing agents for paints... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polyacrylates and their use as degassing agents for paints..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyacrylates and their use as degassing agents for paints... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2887966