Poly (arylene ether) composition, method for the preparation...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S059000

Reexamination Certificate

active

06552105

ABSTRACT:

BACKGROUND OF THE INVENTION
Bitumen compositions are widely used in the construction industry as adhesives, waterproofing agents, and preservatives. Bitumen compositions modified by certain thermoplastics and elastomers are known. For example, U.S. Pat. No. 4,818,367 to Winkler describes an asphalt composition containing an asphalt, a copolymer of an olefin with an anhydride or a nitrile, and an unsaturated elastomer having at least two terminal groups each with an active hydrogen, a halogen, an epoxy oxygen or a cyanocarbon. U.S. Pat. No. 5,280,064 to Hesp et al. describes compositions prepared by vulcanization of a bitumen and an amine-terminated poly(butadiene-co-acrylonitrile), followed by coupling of this vulcanization product with carboxylated polyethylene. U.S. Pat. No. 5,719,215 to Liang et al. and U.S. Pat. No. 5,959,007 to Liang describe compositions comprising bitumen and treated rubbers derived from automobile tires. U.S. Pat. No. 6,100,317 to Liang et al. describes compositions comprising bitumen, a sterically stabilized polyolefin, and another polymer, such as a styrene-butadiene-styrene copolymer, an ethylene-vinyl acetate copolymer, or an EPDM copolymer. U.S. Pat. No. 6,174,939 to Liang describes compositions comprising bitumen, a styrenic polymer, and a triblock copolymer as a compatibilizing agent.
BRIEF SUMMARY OF THE INVENTION
One embodiment of the invention is a composition comprising: a poly(arylene ether) having an intrinsic viscosity less than 0.4 deciliters/gram at 25° C. in chloroform; and a bitumen.
Another embodiment of the invention is a composition comprising the reaction product of: a poly(arylene ether) having an intrinsic viscosity less than 0.4 deciliters/gram at 25° C. in chloroform; and a bitumen.
Another embodiment of the invention is an article comprising either of the above compositions.
Another embodiment of the invention is a method of preparing a composition, comprising: blending a poly(arylene ether) and a bitumen; wherein the poly(arylene ether) has an intrinsic viscosity less than 0.4 deciliters/gram at 25° C. in chloroform.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
One embodiment of the invention is a composition comprising: a poly(arylene ether) having an intrinsic viscosity less than 0.4 deciliters/gram at 25° C. in chloroform; and a bitumen.
The composition may comprise any conventional poly(arylene ether). The term poly(arylene ether) includes polyphenylene ether (PPE) and poly(arylene ether) copolymers; graft copolymers; poly(arylene ether) ether ionomers; and block copolymers of alkenyl aromatic compounds, vinyl aromatic compounds, and poly(arylene ether), and the like; and combinations comprising at least one of the foregoing; and the like. Poly(arylene ether)s are known polymers comprising a plurality of structural units of the formula:
wherein for each structural unit, each Q
1
is independently halogen, primary or secondary C
1
-C
12
alkyl, phenyl, C
1
-C
12
haloalkyl, C
1
-C
12
aminoalkyl, C
1
-C
12
hydrocarbonoxy, or C
1
-C
12
halohydrocarbonoxy wherein at least two carbon atoms separate the halogen and oxygen atoms; and each Q
2
is independently hydrogen, halogen, primary or secondary C
1
-C
12
alkyl, phenyl, C
1
-C
12
haloalkyl, C
1
-C
12
aminoalkyl, C
1
-C
12
hydrocarbonoxy, or C
1
-C
12
halohydrocarbonoxy wherein at least two carbon atoms separate the halogen and oxygen atoms. Preferably, each Q
1
is independently C
1
-C
12
alkyl or phenyl, especially C
1-4
alkyl, and each Q
2
is independently hydrogen or methyl.
Both homopolymer and copolymer poly(arylene ether)s are included. The preferred homopolymers are those comprising 2,6-dimethyl-1,4-phenylene ether units. Suitable copolymers include random copolymers comprising, for example, such units in combination with 2,3,6-trimethyl-1,4-phenylene ether units or copolymers derived from copolymerization of 2,6-dimethylphenol with 2,3,6-trimethylphenol. Also included are poly(arylene ether)s containing moieties prepared by grafting vinyl monomers or polymers such as polystyrenes, as well as coupled poly(arylene ether) in which coupling agents such as low molecular weight polycarbonates, quinones, heterocycles and formals undergo reaction in known manner with the hydroxy groups of two poly(arylene ether) chains to produce a higher molecular weight polymer. Poly(arylene ether)s may further include combinations of any of the above.
The poly(arylene ether) may have a number average molecular weight of about 500 to less than 20,000 atomic mass units (amu), preferably about 1,000 to about 10,000 amu, more preferably about 1,250 to about 9,000 amu. The poly(arylene ether) may have a weight average molecular weight of about 1,000 to less than 40,000 amu, preferably about 2,000 to about 30,000 amu, more preferably about 2,500 to about 20,000 amu. Both number and weight average molecular weights may be determined by gel permeation chromatography using polystyrene standards. The poly(arylene ether) may have an intrinsic viscosity less than 0.4 deciliters per gram (dl/g), preferably less than about 0.35 dl/g, more preferably less than about 0.30 dl/g, yet more preferably less than about 0.20 dl/g, as measured in chloroform at 25° C. The poly(arylene ether) may have an intrinsic viscosity greater than about 0.05 dl/g, preferably greater than about 0.08 dl/g, as measured in chloroform at 25° C.
The poly(arylene ether)s are typically prepared by the oxidative coupling of at least one monohydroxyaromatic compound such as 2,6-xylenol or 2,3,6-trimethylphenol. Catalyst systems are generally employed for such coupling; they typically contain at least one heavy metal compound such as a copper, manganese, or cobalt compound, usually in combination with various other materials. Suitable methods for the preparation and isolation of poly(arylene ether)s are disclosed in, for example, U.S. Pat. No. 3,219,625 to Blanchard et al., U.S. Pat. No. 3,306,875 to Hay, U.S. Pat. No. 4,028,341 to Hay, U.S. Pat. No. 4,092,294 to Bennett, Jr. et al., U.S. Pat. No. 4,440,923 to Bartmann et al., and U.S. Pat. No. 5,922,815 to Aycock et al.
Preferred poly(arylene ether)s may have a low level of amine incorporation. Poly(arylene ether)s are often synthesized under conditions that result in incorporation of amine catalysts, such as dibutylamine, into the polymer. For example, when using dibutylarnine (DBA) in the polymerization process, the amount of DBA incorporated into a high-intrinsic viscosity (e.g., 0.48 dL/g) poly(arylene ether) may be about 0.9-1.0 weight percent, calculated as 100 times the weight of incorporated dibutylamine divided by the total weight of the poly(arylene ether). In comparison, methods for synthesis of low-intrinsic viscosity poly(arylene ether) may result in lower incorporation of amine. For example, the level of dibutylamine incorporated into low molecular weight (e.g., 0.11 dL/g) poly(arylene ether) may be about 0.15 to about 0.28 weight percent. It is desirable to use poly(arylene ether) with low incorporated amine content to minimize the amount of amine that may become thermally liberated during subsequent processing and may adversely affect properties of the composition. For this reason, it is generally preferred that the poly(arylene ether) comprise less than about 0.5 weight percent of amine, preferably less than about 0.3 weight percent of amine, calculated as 100 times the weight of incorporated dibutylamine divided by the total weight of the poly(arylene ether). Method for determining the amine content of poly(arylene ether)s are known in the art and include, for example, titration of the poly(arylene ether) with perchloric acid in the presence of an indicator system comprising 1-naphthol and mercuric acetate.
The amount of poly(arylene ether) in the composition may vary widely and will depend on the ultimate use of the composition and the presence of other components. In general, the composition may comprise at least about 0.1 weight percent, preferably at least about 0.5 weight percent, more preferably at least about 1 weight percent, based on the t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Poly (arylene ether) composition, method for the preparation... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Poly (arylene ether) composition, method for the preparation..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Poly (arylene ether) composition, method for the preparation... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3078706

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.