Polling remote fueling sites for product level for SIR...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Article handling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S236000, C700S241000

Reexamination Certificate

active

06546314

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a device and method for gathering information, and more particularly, gathering information over the Internet on fuel product levels from a data line monitor located at remote, spaced apart fueling locations networked together to a server.
BACKGROUND OF THE INVENTION
The traveling public often pump motor fuel into their own vehicles at self serve fueling sites and convenience stores. There are now over one hundred fifty thousand self serve fueling sites in the US, Americans pump fuel into the fuel tank of their cars over seventeen billion times a year. The Environmental Protect Agency (EPA) requires that all underground storage tanks (UST) and aboveground storage tanks (AST) at these fueling sites be monitored for small leaks. Through the years EPA has allowed several monthly monitoring options including: automatic tank gauging, ground water monitoring, tank interstitial wall monitoring, vapor monitoring, and statistical inventory reconciliation (SIR) of data from the fueling sites. The present disclosure relates to a method for gathering information from these remote sites over the Internet, namely, gathering fuel sales, fuel deliveries, and fuel tank levels for SIR analysis.
There are several commercial brands of fuel dispensers used in the retail petroleum industry to dispense fuel to the public. Dispensers are manufactured by different manufacturers including Gilbarco, Tokheim, Wayne Dresser, and others. The present invention discloses a method for gathering information from different dispenser brands which are often used within the fueling network of the present disclosure. USTs provide fuel to the dispensers, and they typically hold a maximum volume of 10,000 gallons. Three product grades are usually offered, therefore, three tanks are on site unless blend dispensers are used in which case there would be two tanks.
Fuel dispensers at self service fueling sites are typically controlled by a dispenser controller located in a building at the site so that the site attendant can monitor and control the dispensing process. The dispenser controller is generally a microprocessor (MP) based system with read-only-memory (ROM) and read-and-write-memory (RAM) for writing, reading, and storing information. The controller sends data signals (commands) to the dispensers including price to charge for the fuel dispensed, preset amounts of fuel to dispense, and pump authorization to dispense fuel. The dispensers likewise send data signals (responses) to the controller including pump number, pump status, and dispensed fuel volume and value. The personal computer (PC) is particularly well suited for use as a dispenser controller since it can simultaneously perform other functions including cash register, scanning, wet and dry stock inventory, accounting, payroll, and other modules. These systems are generally referred to as Point-of-Sales (POS) systems. Typically, there is a fuel pump control center between the POS and the dispensers which allows the POS to communicate with the dispensers. U.S. Pat. Nos. 5,694,326, 5,557,529, and 5,270,943, having common inventors and assignee, relate to fuel pump centers for controlling dispensers through the POS system.
The present invention monitors the data line between the POS and the dispensers to collect information on the amount of fuel dispensed from each dispenser. U.S. Pat. No. 5,361,216, having common inventors and assignee as the present disclosure, relates to a flow signal monitoring system for monitoring the data signals in a data wire between the fuel dispensers and the dispenser controller. Flow quantity signals are collected, stored, and later down-loaded to other devices. The system includes an electronic communication translator which is attached to the data wire. The system is designed such that it is coupled to the data wire, however it is electrically isolated from the data wire. The system uses a configuration circuit to convert the signals into corresponding computer logic signal. This allows the system to work with different brands of dispensers and transparent to the POS. The computer logic signals are sent to a microprocessor with ROM and RAM for processing. The system also includes a data field selector which instructs the MP to select and process data fields relating to flow quantity, and to discard all other data signals. Information on the amount of fuel dispensed at each fueling position in the dispensers is stored in memory and later down-loaded to other devices. The system is referred to in the industry as a remote line monitor (RLM).
In the present disclosure, the RLM further includes a serial interface to an ATG for collecting information on product level in the USTs and ASTs at the fueling site, ATGs are widely used at public fueling sites. The system collects information on fuel sales, fuel deliveries, and existing fuel tank inventory, and transmits this information via the Internet to a server which is networked to the RLM through a communication system. In general, the present disclosure combines the RLM with the Internet to form an information gathering system for collecting product profile levels including fuel dispensed for each hose at each fueling position for each dispenser. This information is obtained by monitoring the data line between the dispensers and the POS. The RLM is further serially interfaced to an ATG for determining the amount of existing inventory in each tank. The RLM accumulates this information into a data file which is later transferred over the Internet as a data packet.
U.S. Pat. No. 5,423,457, issued to Michael Nicholas et al., discloses a system for detecting product lost which uses a site controller to perform SIR analysis on inventory data on site. U.S. Pat. No. 5,400,253, issued to Paul O'Conner, discloses an on-site computer system which constantly collects and analyses data through a SIR formula. U.S. Pat. No. 5,757,664, issued to Warren Rogers et al., discloses a system for assessing the operational performance of a fluid storage and dispensing system by measuring and analyzing volumes associated with the system. These references, however, do not disclose all of the elements as disclosed and used in combination in the present disclosure, in particular, the RLM. The present disclosure combines the line monitoring technology disclosed in U.S. Pat. No. 5,361,216 with an off-site server through the Internet for the purpose of gathering dispenser and UST product level information through a remote RLM located at remote fueling sites.
SUMMARY OF THE INVENTION
In summary, the present invention provides a method for gathering product level profile information from a RLM located at different, spaced apart fueling locations networked together to a server through the Internet. The RLM monitors the data line between the dispensers and the POS to determine the amount of fuel dispensed; it is further interfaced to the ATG to determine the amount of product remaining in the USTs, and it tracts fuel additions to the USTs from delivery trucks. This information is stored in a data file in the RLM, and is later linked together along with a site identifier to form a data packet for transmission. A communication network interconnects the RLM of the remote fueling sites with a server. The server maintains a searchable-selectable database of routing numbers for the remote sites, and a database of product level information for each remote site. The server polls individually the remote sites to obtain the data packets. The data packet is in digital form if delivery is over the Internet, and it may be further be encoded for protection. Configurators may further be used in the RLM to configure the data signals from the dispenser to the controller into signals which are readable by the RLM so that different dispenser brands can be used in the network.
When a customer pulls his vehicle up to a dispenser for fuel, he selects the grade of fuel he wishes to put in his vehicle, for example, low, mid, high grades are most often offered. This information al

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polling remote fueling sites for product level for SIR... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polling remote fueling sites for product level for SIR..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polling remote fueling sites for product level for SIR... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3070308

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.