Polishing pad, polishing method, and polishing machine for...

Abrading – Machine – Rotary tool

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C451S526000

Reexamination Certificate

active

06306021

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a polishing pad for mirror-polishing semiconductor wafers, and to a mirror-polishing method and a mirror-polishing machine which use the polishing pad.
2. Background Art
Conventionally, in a semiconductor-device fabrication process, thin films such as oxide film, metal film, or polycrystal silicon film are layered on a semiconductor wafer in order to form elements thereon. In such a process, when a plurality of wiring layers are formed, the surfaces thereof become uneven, resulting in occurrence of a problem that focusing cannot be performed properly when a fine pattern is exposed and printed on the surface. In order to solve the problem, a so-called CMP (Chemical Mechanical Polishing) technique has been proposed. In relation to the CMP technique, use of a polishing pad having a two-layer structure has been proposed in order to maintain a constant distribution of thickness of films and eliminate fine unevenness on the films (see (Junji Watanabe et al. “The Structure of a Polishing Pad for Polishing while the Surface is Used as a Reference,” papers of Spring Meeting, The Japan Society for Precision Engineering, 183 (1997)). In the two-layer polishing pad, the bottom layer is formed of a rubber elastomer in order to remove nonuniformity of polishing stock removal caused by warpage or a large undulation of a wafer itself; and a top layer is formed of hard cloth in order to eliminate unevenness on the wafer surface generated in a semiconductor device fabricating process, to thereby obtain a flat surface.
Meanwhile, in the production of mirror-polished wafers for semiconductor devices, mirror-polishing is performed in order to obtain a desired flatness and surface roughness. In the conventional polishing process, one surface of a semiconductor is rough-polished by use of a hard single-layer polishing pad in order to obtain a desired flatness, and the surface is then finish-polished by use of a single-layer soft polishing pad in order to obtain a desired roughness.
In general, mirror-polishing is performed in a single stage or multiple stages, and a so-called suede-type polishing pad is used in the final or finish polishing. In the suede-type polishing pad, polyurethane is layered on a substrate sheet formed of polyurethane-impregnated polyester felt or the like, a foam layer is grown in the polyurethane, and the surface portion of the foam layer is removed in order to form fluffy openings in the foam layer. When the surface of a semiconductor wafer is removed by an amount of a few to a few hundreds of nano-millimeters through use of such a suede-type polishing pad, surface roughness having a period of a few to a few tens of nano-millimeters (hereinafter may be referred to as “haze”) can be improved to a sufficient degree.
By the way, with a recent increase in the degree of integration of semiconductor devices, the requirement for the flatness of wafers has become more strict. Therefore, a conventional polishing method for semiconductor mirror-polished wafers cannot achieve a flatness required for production of state-of-the-art semiconductor devices. Therefore, there has arisen a requirement to maintain a flatness obtained through flatness-improving machining, such as double-side polishing or surface grinding, until completion of final or finish polishing.
Further, since improvement of surface roughness—which is a purpose of finish polishing—can be achieved by finish polishing in which the polishing stock removal has been set to a very small amount as described above, the degradation of flatness due to the finish polishing has been considered ignorable.
In general, the above-described CMP technique is employed in order to achieve uniform polishing stock removal. However, when a two-layer polishing pad having a hard top layer that has conventionally been used in the CMP technique is used, a polished wafer will have a degraded surface roughness. Especially, when such a two-layer polishing pad is used for finish polishing, improvement in the haze level, which is the purpose of the finish polishing, becomes difficult. Further, when a two-layer polishing pad having a top layer formed of a suede-type polishing pad that has conventionally been used for finish polishing is used, undulation is generated in the bottom layer made of rubber elastomer, due to a horizontal force generated during polishing, and the undulation is transferred to the top layer of the polishing pad, resulting in occurrence of a problem that a wafer is polished unevenly in terms of polishing stock removal. Especially, this problem tends to become remarkable in the vicinity of the edge portion of a wafer. Since the top layer is softer than the top layer that has been used in conventional two-layer polishing pads, the top layer exhibits excessively high performance of following undulation of the bottom layer, resulting in degradation in uniformity of polishing stock removal at the peripheral portion of a wafer, which causes a variation in flatness before and after finish polishing.
The inventors of the present invention investigated variations in flatness caused by finish polishing, and found that the flatness can be degraded to a large degree even by finish polishing in which stock removal is very small. Accordingly, the inventors considered that there must be developed a finish polishing method that does not degrade flatness or that can secure uniform polishing stock removal.
SUMMARY OF THE INVENTION
The present invention has been accomplished to solve the above-mentioned problems, and an object of the present invention is to provide a polishing pad for mirror-polishing, in which undulation produced in a bottom layer made of rubber elastomer due to a horizontal force generated during polishing is prevented from being transferred to a top layer of the polishing pad, and which mitigates unevenness in polishing stock removal stemming from warpage or undulation of a wafer itself, as well as a polishing method and a polishing machine which utilize the polishing pad.
Another object of the present invention is to provide a polishing pad for finish mirror-polishing which has the same features as those of the above-described polishing pad for mirror-polishing, as well as a polishing method and a polishing machine for finish polishing which utilize the polishing pad.
In order to achieve the above object, the present invention provides a polishing pad for mirror-polishing a semiconductor wafer by use of a polishing machine comprising a turn table on which a polishing pad is attached, a unit for feeding a polishing agent onto a surface of the polishing pad, and a mechanism for pressing a semiconductor wafer onto the surface of the polishing pad, wherein the polishing pad comprises a top layer formed of a porous soft material, a bottom layer formed of a rubber elastomer, and a hard plastic sheet disposed between the top layer and the bottom layer and bonded to the bottom layer.
Since the polishing pad has a three-layer structure including a top layer formed of a porous soft material, an intermediate layer formed of a hard plastic sheet, and a bottom layer formed of a rubber elastomer, and the hard plastic sheet serving as the intermediate layer has sufficient stiffness, undulation produced in a bottom layer made of rubber elastomer due to a horizontal force generated during polishing is prevented from being transferred to a top layer of the polishing pad. In addition, unevenness in polishing stock removal stemming from warpage or undulation of a wafer itself is mitigated, so that semiconductor wafers having a desired flatness and surface roughness can be produced.
In this case, the tensile strength of the hard plastic sheet is preferably 1 MPa or more; the material of the hard plastic sheet is preferably selected from the group of polyethylene terephthalate (PET), polyimide, polyethylene, and polyurethane; and the thickness of the hard plastic sheet is preferably 0.02 to 0.2 mm.
When the tensile strength of the hard plastic sheet serving as the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polishing pad, polishing method, and polishing machine for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polishing pad, polishing method, and polishing machine for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polishing pad, polishing method, and polishing machine for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2576087

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.