Optical: systems and elements – Lens – With multipart element
Reexamination Certificate
2000-01-06
2002-03-05
Epps, Georgia (Department: 2873)
Optical: systems and elements
Lens
With multipart element
C359S456000, C359S457000, C359S458000, C353S010000, C348S044000
Reexamination Certificate
active
06353508
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to methods and systems of displaying and/or viewing optical images with enhanced apparent depth.
BACKGROUND OF THE INVENTION
Human beings have the ability to perceive depth, and various attempts have been made to reproduce the 3-D effects on the 2-D media.
For example, various prior art techniques and apparatus have been heretofore proposed to present three dimensional images on a viewing screen using a stereographic technique such as on a polarization conserving motion picture screen. See U.S. Pat. No. 4,955,718 to Jachimowicz, et al., U.S. Pat. No. 4,963,959 to Drew, U.S. Pat. No. 4,962,422 to Ohtomo, et al., U.S. Pat. No. 4,959,641 to Bess, et al., U.S. Pat. No. 4,957,351 to Shioji, U.S. Pat. No. 4,954,890 to Park, U.S. Pat. No. 4,945,408 to Medina, U.S. Pat. No. 4,936,658 to Tanaka, et al., U.S. Pat. No. 4,933,755 to Dahl, U.S. Pat. No. 4,922,336 to Morton, U.S. Pat. No. 4,907,860 to Noble, U.S. Pat. No. 4,877,307 to Kalmanash, U.S. Pat. No. 4,872,750 to Morishita, U.S. Pat. No. 4,853,764 to Sutter, U.S. Pat. No. 4,851,901 to Iwasaki, U.S. Pat. No. 4,834,473 to Keyes, et al., U.S. Pat. No. 4,807,024 to McLaurin, et al., U.S. Pat. No. 4,799,763 to Davis, U.S. Pat. No. 4,772,943 to Nakagawa, U.S. Pat. No. 4,736,246 to Nishikawa, U.S. Pat. No. 4,649,425 to Pund, U.S. Pat. No. 4,641,178 to Street, U.S. Pat. No. 4,541,007 to Nagata, U.S. Pat. No. 4,523,226 to Lipton, et al., U.S. Pat. No. 4,376,950 to Brown, et al., U.S. Pat. No. 4,323,920 to Collendar, U.S. Pat. No. 4,295,153 to Gibson, U.S. Pat. No. 4,151,549 to Pautzc, U.S. Pat. No. 3,697,675 to Beard, et al. These techniques and apparatus involve the display of polarized or color sequential two-dimensional images which contain corresponding right eye and left eye perspective views of three dimensional objects. These separate images can also be displayed simultaneously in different polarizations or colors. Suitable eyewear, such as glasses having different polarizing or color separations coatings permit the separate images to be seen by one or the other eye. This type of system is expensive and cumbersome because it requires collecting the image from two different views which demands a special camera or two cameras. U. S. Pat. No. 4,954,890 to Park discloses a representative projector system employing the technique of alternating polarization.
Another technique involves a timed sequence in which images corresponding to right-eye and left-eye perspectives are presented in timed sequence with the use of electronic light valves. U.S. Pat. No. 4,970,486 to Nakagawa, et al., and U.S. Pat. No. 4,877,307 to Kalmanash disclose representative prior art of this type. This time sequence technique also requires the use of eyewear.
Yet, another example of the timed sequence technique in which the left and right eye views have different polarizations and are viewed not with glasses but with a single polarized screen over both eyes. The screen is formed of a transparent material that has two or more different polarization coatings. U.S. Pat. No. 5,347,644 to Sedlmayr discloses representative prior art of this type. The timed sequence also requires collecting the image from different views, right eye and left eye.
Alternating polarization and timed sequence stereoscopic techniques both possess the following disadvantages; the image cannot be collected or displayed with convention single view equipment, and eyewear is required for viewing.
U.S. Pat. No. 5,543,964 to Taylor et al. is another example of superimposing images to create an illusion of depth based on the stereo nature of human vision. The proposed invention creates depth using a single image and is not based on binocular vision. Another superimposition technique is shown in U.S. Pat. No. 5,556,184 to Nader-Esfahani. Again the proposed invention is not based on superimposition of images. U.S. Pat. No. 5,589,980 to Bass displays images in apparent three dimensions using two display devices, one being in front of the other creating apparent depth. The proposed invention displays images in apparent three dimensions using a single screen instead of two.
U.S. Pat. No. 5,559,632 to Lawrence et al. introduces special glasses for viewing regular images in apparent three dimensions employing stereoscopic theory. The proposed invention is not based on stereoscopic theory, and does not require eyewear. It is known that holographic techniques have been used for three dimensional information recording and display. These techniques involve illuminating a three dimensional object with a coherent (laser) beam of light and interfering that light with a reference beam from the same source. The interference pattern is collected on a recording film medium and illumined with the same coherent light from which it was made. The result is a projected image of the object in three dimensions able to be viewed without eyewear. Holographic techniques are not in general use because inherent in them are many limitations: an object has its dimension limited to an extent that it can be illuminated by a laser beam; the object should be stationary; a photograph thereof must be taken in a dark room; and the image cannot be collected and displayed in real time.
Some of the limitations of holography have been addressed by a technique known as composite holography. Composite holography consists of photographing a three dimensional object in a plurality of different directions under usual illumination such as natural light to prepare a plurality of photographic film sections on which two-dimensional pictorial information is recorded. These two dimensional photographs are information images and are separately illumined with coherent (laser) light and are recorded as holograms. These holograms are then simultaneously illumined with coherent (laser) light producing a projection of the perspective information of the three-dimensional object to be recognized by unaided human eyes at different angles depending upon their position with as much effect as one substantially views the image of the three dimensional object. Composite holography was limited since the size of the recording medium of the holograms had to be large leading to a large sized overall device making it economically impractical. That limitation was resolved by Takeda et al. as disclosed in U.S. Pat. No. 4,037,919. Also in that disclosure is a detailed description of composite holography. The disadvantage of composite holography is that it involves photographing the object from many different angles and making a hologram of each of those photographic images. This makes it impossible to collect and display the three dimensional image in real time. A further disadvantage is that it is time consuming, laborious and expensive.
Thus, there is a great need for a system and method for viewing images in enhanced apparent depth, while avoiding the shortcomings and drawbacks of prior art apparatus and methodologies.
OBJECT OF THE PRESENT INVENTION
Accordingly, it is a primary object of the present invention to provide a novel method and apparatus for viewing images in enhanced apparent depth while overcoming the shortcomings and drawbacks associated with prior art apparatus and methodologies.
A further object of the present invention is to provide a method and system for enhancing the depth of an image by presenting it on a specialized screen system.
A further object of the present invention is to provide a screen system that can be placed over a television or computer display and enhance the apparent depth without the use of eyewear.
A further object of the present invention is to provide a method and system for enhancing the depth of an optical image that has been recorded on conventional film or video with white light unlike holography where the image must be recorded with laser light.
Still further object of the present invention is to provide a method and system for viewing any television/video or movie with enhanced depth without adding stereoscopic information to the film or the film or the television/video signal. c
Burke Douglas
Epps Georgia
Spector David N.
LandOfFree
Polarizing fresnel enhanced apparent depth viewing screens... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polarizing fresnel enhanced apparent depth viewing screens..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polarizing fresnel enhanced apparent depth viewing screens... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2825387