Polarization independent optical coherence-domain reflectometry

Optics: measuring and testing – For optical fiber or waveguide inspection

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

356351, G01B 902, G01N 2184

Patent

active

052027457

ABSTRACT:
An optical coherence-domain reflectometry system provides an interferometer driven by a broadband incoherent light source with the device under test connected to one arm of the interferometer and a movable scanning mirror in the other arm providing a reference signal. The mirror moves at a controlled velocity to produce a Doppler shift in the reference signal frequency. The reference signal arm also includes a piezoelectric transducer which modulates the phase of the reference signal at a given frequency, causing a further shift in the reference signal frequency. The interference signal is detected and measured by a polarization diversity receiver. A linear polarizer in the reference signal arm is adjusted to produce equal reference signal powers in each arm of the polarization diversity receiver in the absence of a reflection signal from the test arm. The measured reflectometry signal is substantially independent of the state of polarization of the reflected signal from the device under test.

REFERENCES:
patent: 4653915 (1987-03-01), Frigo et al.
patent: 4968112 (1990-11-01), Lovely et al.
K. Hotate et al. "Reflectometry by Means of Optical-Coherence Modulation", Electronics Letters, vol. 26, No. 22, Oct. 26, 1989, pp. 1503-1505.
Takao Ooka, "Trends in Optical Communication Measuring Technology and Measuring Instruments", JEE? Journal of Electronic Engineering, vol. 26, No. 267, Mar. 1989, pp. 64-70.
D. Kreit and R. C. Youngquist; "Polisation-Insensitive Optical Heterodyne Receiver for Coherent FSK Communications", Electronics Letters, Feb. 12, 1987, vol. 23, No. 4.
"Review of Long Wavelength Single-Mode Optical Fiber Reflectometry Techniques", Peter Healey, Journal of Lightwave Technology, vol. LT-3, No. 4, pp. 876-886, (Aug. 1985).
"OFDR Diagnostics For Fibre And Integrated-Optic Systems", S. A. Kingsley and D. E. N. Davies, Electronics Letters, vol. 21, No. 10, pp. 434-435, (Mar. 1985).
"Optical Frequency Domain Reflectometry In Single-Mode Fiber", W. Eickhoff and R. Ulrich, Appl. Phys. Lett., 39(9), pp. 693-695 (Nov. 1981).
"Investigation of Optical Components In Micrometer Range Using An OTDR System With The Balanced Heterodyne Detection", R. P. Novak, H. H. Gilgen, R. P. Salathe, Sep. 20-21, 1988.
"High Resolution Optical Time Domain Reflectometry For The Investigation Of Integrated Optical Devices", P. Breaud, et al. IEEE Journal of Lightwave Tech., vol. 25 (1989) pp. 755-759.
"Optical Coherence-Domain Reflectometry: A New Optical Evaluation Technique", Youngquist, et al. Optics Letters, vol. 12, No. 3, pp. 158-160, (Mar. 1987).
"New Measurement System For Fault Location In Optical Waveguide Devices Based On An Interferometric Technique", Takada, et al. Applied Optics, vol. 26, No. 9, pp. 1603-1606, (May 1987).
"Guided-Wave Reflectometry With Micrometer Resolution", B. L. Danielson, et al. Applied Optics, vol. 26, No. 14, pp. 2836-2842, (Jul. 15, 1987).
"Characterization of Silica-Based Waveguides With An Interferometric Optical Time-Domain Reflectometry System Using a 1.3-.mu.m-Wavelength Superluminescent Diode" Takada, et al. Optics Letters, vol. 14, No. 13, pp. 706-708, (Jul. 1, 1989).
"Fading Rates in Coherent OTDR", P. Healey, Electronics Letters, vol. 20, No. 11, pp. 443-444 (May 24, 1984).
"Birefringence and Polarisation Dispersion Measurements In High-Birefringence Single-Mode Fibres", M. Monerie, et al., Electronics Letters, vol. 23, p. 198 (1987).
"Measurement Of Spatial Distribution Of Mode Coupling In Birefringent Polarization-Maintaining Fiber With New Detection Scheme", K. Takada, et al, Optics Letters, vol. 11, No. 10, pp. 680-682 (Oct. 1986).
"Chromatic Dispersion Characterization In Short Single-Mode Fibers By Spectral Scanning Of Phase Difference In A Michelson Interferometer", Javier Pelayo, et al., Journal of Lightwave Technology, vol. 6, No. 12, pp. 1861-1865, (Dec. 1988).
"Three Ways To Implement Interferencial Techniques: Application To Measurements of Chromatic Dispersion, Birefringence, and Nonlinear Susceptibilities", Francois, et al., Jn Lightwave Tech. vol. 7, No. 3, pp. 550-553 (Mar. 1989).
"Measurement Of Mode Couplings And Extinction Ratios In Polarization-Maintaining Fibers", Tsubokawa, Journal of Lightwave Technology, vol. 7, No. 1, pp. 45-50, (Jan. 1989).
"Polarization-State Control Schemes For Heterodyne Or Homodyne Optical Fiber Communications", Okoshi, Journal of Lightwave Technology, vol. LT-3, No. 6, pp. 1232-1237, (Dec. 1985).
"Polarization Independent Coherent Optical Receiver", B. Glance, Journal of Lightwave Technology, vol. LT-5, No. 2, pp. 274-276, (Feb. 1987).
"Polarisation-Insensitive Operation of Coherent FSK Transmission System Using Polarisation Diversity", Ryu, et al., Electronics Letters, vol. 23, No. 25, pp. 1382-1384, (Dec. 3, 1987).
"First Sea Trial of FSK Heterodyne Optical Transmission System Using Polarisation Diversity" Ryu, et al, Electronics Letters, vol. 24, No. 7, pp. 399-400, (Mar. 31, 1988).
"New Phase and Polarization-Insensitive Receivers For Coherent Optical Fibre Communication Systems" Singh, et al, Optical And Quantum Electronics, vol. 21, pp. 343-346, (1989).
"Adaptive Polarisation Diversity Receiver Configuration For Coherent Optical Fiber Communication" Kersey, et al. Electronics Letters, vol. 25, No. 4, pp. 275-277 (Feb. 16, 1989).
N. J. Frigo, A. Dandridge and A. B. Tveten, "Technique for Elimination of Polarisation Fading in Fibre Interferometers", Electronics Letters, Apr. 12, 1984, vol. 20, No. 8, pp. 319-320.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polarization independent optical coherence-domain reflectometry does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polarization independent optical coherence-domain reflectometry, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polarization independent optical coherence-domain reflectometry will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1158945

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.