Polar relay

Electricity: magnetically operated switches – magnets – and electr – Electromagnetically actuated switches – Polarity-responsive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C335S080000, C335S128000

Reexamination Certificate

active

06670871

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a polar (or polarized) relay, and more particularly to a polar relay of a balanced-armature type. Also, the present invention relates to an information processing apparatus provided with a balanced-armature type polar (or polarized) relay. The present invention further relates to a method of manufacturing a balanced-armature type polar relay.
BACKGROUND ART
A polar relay that is comprised of a base, an electromagnet incorporated into the base, a permanent magnet provided in conjunction with the electromagnet, an armature supported pivotably on the base, the armature having a pair of abutting surfaces in opposite end regions at a distance from the pivoting center of the armature, which are opposed to and capable of abutting on a pair of core polar surfaces of the electromagnet, at least one electrically conductive plate spring pivotable on the base along with the armature, movable contacts provided on the opposite ends of each of at least one conductive plate spring, and a plurality of fixed contacts disposed securely on the base so as to be respectively opposed to and capable of coming into contact with the corresponding movable contacts, is known as a balanced-armature type polar relay. Generally, this type of polar relay has advantages of higher sensitivity, shorter operating time, etc., in comparison with a non-polarized relay, as well as being easy to reduce in size and power consumption, so that, in recent years, they have been increasingly utilized in various information processing apparatuses, such as modems and facsimiles in offices and homes, which are adapted to be connected to telecommunications channels or electric communication lines.
When telecommunications-channel connectable equipment are to be connected to a telecommunications channel (e.g., a telephone circuit), it is required that circuits (a power circuit, a signal circuit) of the connectable equipment are isolated from the telecommunications channel with sufficient dimensions for insulation (i.e., sufficient insulation distances), as prescribed, for respective utilized voltages, in the international standard IEC60950. Conventionally, in order to assure such insulation distances as prescribed, certain measures have been taken, wherein a non-polarized relay having a relatively large open- or break-contact distance (that is, a maximum distance between contacts during the travel of an armature) is adopted as a relay to be mounted in the telecommunications-channel connectable equipment, or wherein a transformer is interposed between the circuit of the connectable equipment and the telecommunications channel.
The above described conventional measures for insulation meeting the requirements of IEC60950 have some problems to be solved, from the viewpoint of reduction in size and in power consumption. First, in the case of mounting a non-polarized relay in the connectable equipment, the non-polarized relay has a long armature travel and thus the finished product has relatively large external dimensions, which may become factors inhibiting the reduction in size and power consumption of the connectable equipment. On the other hand, when a low power-consumption polar relay, as described above, is mounted in the telecommunications-channel connectable equipment, the polar relay has, in general, a relatively small open- or break-contact distance, which would require the provision of a transformer, mounted in the connectable equipment, to be interposed between a circuit of the connectable equipment and the telecommunications channel, so as to meet the requirements of IEC60950. Thus, in this case, even when a sufficiently small polar relay is used, the existence of the transformer may resultingly hamper the size reduction of the telecommunications-channel connectable equipment.
Further, in order to meet the requirements of IEC60950, it is desired for a relay to be mounted in telecommunications-channel connectable equipment such that sufficient insulation distances are assured not only between contacts in an opened state but also between, for example, a contact and a coil of an electromagnet, or between contacts arranged side-by-side in the case of a double-circuit type relay. Especially, in a miniature polar relay, it has been a problem to assure the insulation distances between various above-described components.
DISCLOSURE OF THE INVENTION
It is an object of the present invention to provide a polar relay, of a balanced-armature type, that is capable of assuring, by its own structure, sufficient insulation distances, meeting the requirements of IEC60950, when it is mounted in telecommunications-channel connectable equipment.
It is another object of the present invention to provide a polar relay, of a balanced-armature type, that is capable of increasing insulation distances required between contacts in an opened state, while the external dimensions of the finished product are prevented from increasing as effectively as possible.
It is still another object of the present invention to provide a polar relay, of a balanced-armature type, that is capable of assuring sufficient insulation distances required between a contact and a coil, while the external dimensions of the finished product are prevented from increasing as effectively as possible.
It is still another object of the present invention to provide a polar relay, of a balanced-armature type, that is capable of assuring sufficient insulation distances required between contacts arranged side-byside, while the external dimensions of the finished product are prevented from increasing as effectively as possible.
It is still another object of the present invention to provide a miniature information processing apparatus, of a low power-consumption type, that is capable of assuring sufficient insulation distances meeting the requirements of IEC60950, when it is connected to a telecommunications channel.
It is still another object of the present invention to provide a method for manufacturing a polar relay that
15
is capable of assuring, by its own structure, sufficient insulation distances, meeting the requirements of IEC60950, when it is mounted in telecommunications-channel connectable equipment.
In order to accomplish the above objects, the present invention provides a polar relay comprising a base; an electromagnet incorporated into the base; a permanent magnet provided in conjunction with the electromagnet; an armature pivotably supported on the base and having a pair of abutting surfaces disposed in opposite end regions at a distance from a pivoting center, which are respectively opposed to and capable of abutting on a pair of core polar surfaces of the electromagnet; at least one electrical conductive plate spring pivotable on the base along with the armature; a plurality of movable contacts provided on opposite ends of each of the at least one electrical conductive plate spring; and a plurality of fixed contacts arranged securely on the base, the fixed contacts being respectively opposed to and capable of coming into contact with the movable contacts; wherein the maximum distance between one of the movable contacts and one of the fixed contacts, capable of coming into contact with each other during the travel of the armature, is set to 1 mm or more.
In the preferred aspect, the polar relay is constituted such that at least one of each of the pair of abutting surfaces of the armature and each of the pair of core polar surfaces of the electromagnet, opposed to the abutting surface, is formed as an inclined surface for reducing an angle between opposed surfaces, during a mutual abutment, as much as possible, and that the armature passes, during the travel thereof, a position where each of the pair of abutting surfaces oppositely faces a corresponding one of the pair of core polar surfaces in parallel with each other.
In this arrangement, the thickness of the opposite end regions in a pivoting direction of the armature may gradually decrease toward opposite ends of the armature, the pair of abutting surfaces being thereb

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polar relay does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polar relay, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polar relay will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3165118

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.