Point of care diagnostic systems

Surgery – Diagnostic testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S304000, C600S310000, C600S351000, C600S573000, C600S584000, C435S004000, C436S814000

Reexamination Certificate

active

06394952

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to systems and methods that aid in providing a medical diagnosis or risk assessment for a patient using biochemical and historic patient data, including data from point of care diagnostic tests or assays, and processing the information to give an indication of a medical condition or risk.
BACKGROUND OF THE INVENTION
Evaluation of Immunoassay Data
In diagnostic immunochromatographic assays, where results are determined by a color change or the production of color, results are generally detected visually by human eye. As a result of the human perception and judgment involved, there is significant variance among those interpreting such test results as to whether a color change or other measurable signal has occurred, and the degree of such occurrence. Furthermore, there is a great deal of subjectivity involved in interpreting whether immunoassay results are positive or negative. This is particularly pronounced where the result is close to a threshold value. The variance is further enhanced when attempts are made to quantitate such assay test results. Accurate results may be critical for certain diagnostic assays.
It is desirable to develop techniques that are objective in nature, and that reduce the error associated with interpreting immunochromato-graphic and other assay test results. Therefore, it is an object herein to provide systems, methods, devices and instruments for objectively assessing data from biochemical and other tests and to use such data for diagnosis and risk assessment. It is also an object herein to incorporate decision-support methodologies into such systems and thereby enhance the diagnostic and risk assessment capabilities thereof.
It is also an object herein to provide systems and methods for use in detecting and measuring fetal fibronectin (fFN) levels in a patient sample and using such information to diagnose and assess risks of preterm labor, fetal membrane rupture and other related disorders and conditions.
SUMMARY OF THE INVENTION
Systems and methods for medical diagnosis or risk assessment for a patient are provided. These systems and methods are designed to be employed at the point of care, such as in emergency rooms, operating rooms, hospital laboratories and other clinical laboratories, doctor's offices, in the field, or in any situation in which a rapid and accurate result is desired. The systems and methods process patient data, particularly data from point of care diagnostic tests or assays, including immunoassays, chemical assays, nucleic acid assays, colorimetric assays, fluorometric assays, chemiluminescent and bioluminescent assays, electrocardiograms, X-rays and other such tests, and provide an indication of a medical condition or risk or absence thereof.
The systems include an instrument for reading or evaluating the test data and software for converting the data into diagnostic or risk assessment information. In certain embodiments, the systems include a test device, such as a test strip, optionally encased in a housing, for analyzing patient samples and obtaining patient data. In particular embodiments, the device includes a symbology, such as a bar code, which is used to associate identifying information, such as intensity value, standard curves, patient information, reagent information and other such information, with the test device. The reader in the system is optionally adapted to read the symbology.
Further, the systems optionally include a decision-support system or systems, such as a neural network, for evaluating the digitized data, and also for subsequent assessment of the data, such as by integration with other patient information, including documents and information in medical records. All software and instrument components are preferably included in a single package. Alternatively, the software can be contained in a remote computer so that the test data obtained at a point of care can be sent electronically to a processing center for evaluation. Thus, the systems operate on site at the point of care, such as in a doctor's office, or remote therefrom.
The patient information includes data from physical and biochemical tests, such as immunoassays, and from other procedures. The test is performed on a patient at the point of care and generates data that can be digitized, such as by an electronic reflectance or transmission reader, which generates a data signal. The signal is processed using software employing data reduction and curve fitting algorithms, or a decision support system, such as a trained neural network, or combinations thereof, for converting the signal into data, which is used to aid in diagnosis of a medical condition or determination of a risk of disease. This result may be further entered into a second decision support system, such as a neural net, for refinement or enhancement of the assessment.
In a particular embodiment, systems and methods for detecting and measuring levels of a target analyte in a patient sample, analyzing the resulting data, and providing a diagnosis or risk assessment are provided. The systems and methods include an assay device in combination with a reader, particularly a computer-assisted reader, preferably a reflectance reader, and data processing software employing data reduction and curve fitting algorithms, optionally in combination with a trained neural network for accurately determining the presence or concentration of analyte in a biological sample. The methods include the steps of performing an assay on a patient sample, reading the data using a reflectance reader and processing the reflectance data using data processing software employing data reduction algorithms. In a particular embodiment, the assay is an immunoassay. Preferred software includes curve fitting algorithms, optionally in combination with a trained neural network, to determine the presence or amount of analyte in a given sample. The data obtained from the reader then can be further processed by the medical diagnosis system to provide a risk assessment or diagnosis of a medical condition as output. In alternative embodiments, the output can be used as input into a subsequent decision support system, such as a neural network, that is trained to evaluate such data.
In a preferred embodiment, the assay device is a lateral flow test strip, preferably, though not necessarily, encased in a housing, designed to be read by the reader, and the assay is a sandwich immunoassay. For example, in one embodiment thereof, a patient sample is contacted with an antibody for a selected target analyte indicative of a disease, disorder or risk thereof. The antibody is preferably labeled by conjugation to a physically detectable label, and upon contacting with the sample containing the target analyte forms a complex. The antibody-analyte complex is then contacted with a second antibody for the antigen, which is immobilized on a solid support. The second antibody captures the antibody-analyte complex to form an antibody-analyte-antibody sandwich complex, and the resulting complex, which is immobilized on the solid support, is detectable by virtue of the label. The test strip is then inserted into a reader, where the signal from the label in the complex is measured. Alternatively, the test strip could be inserted into the reader prior to addition of the sample. Additionally, the housing may include a symbology, such as a bar code, which is also read by the reader and contains data related to the assay device and/or test run. The signal obtained is processed using data processing software employing data reduction and curve fitting algorithms, optionally in combination with a trained neural network, to give either a positive or negative result, or a quantitative determination of the concentration of analyte in the sample, which is correlated with a result indicative of a risk or presence of a disease or disorder. This result can optionally be input into a decision support system, and processed to provide an enhanced assessment of the risk of a medical condition as output. T

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Point of care diagnostic systems does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Point of care diagnostic systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Point of care diagnostic systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2899589

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.