Static structures (e.g. – buildings) – With component having discrete prestressing means – Anchorage
Reexamination Certificate
2000-03-13
2002-05-28
Stephan, Beth A. (Department: 3635)
Static structures (e.g., buildings)
With component having discrete prestressing means
Anchorage
Reexamination Certificate
active
06393781
ABSTRACT:
TECHNICAL FIELD
The present invention relates to post-tension anchor systems generally. More particularly, the present invention relates to pocketformers which are used for the creation of a pocket in concrete adjacent an end of the tendon in the anchor system. Additionally, the present invention relates to devices for securing the pocketformer in place at the end of the anchorage system.
BACKGROUND ART
For many years, the design of concrete structures imitated typical steel design of column, girder and beam. With technological advances in structural concrete, however, its own form began to evolve. Concrete has the advantages of lower cost than steel, of not requiring fireproofing, and of its plasticity, a quality that lends itself to free flowing or boldly massive architectural concepts. On the other hand, structural concrete, though quite capable of carrying almost any compressive (vertical) load, is extremely weak in carrying significant tensile loads. It becomes necessary, therefore, to add steel bars, called reinforcements, to concrete, thus allowing the concrete to carry the compressive forces and the steel to carry the tensile (horizontal) forces.
Structures ofreinforced concrete may be constructed with load-bearing walls, but this method does not use the full potentialities of the concrete. The skeleton frame, in which the floors and roofs rest directly on exterior and interior reinforced-concrete columns, has proven to be most economic and popular. Reinforced concrete framing is seemingly a quite simple form of construction. First, wood or steel forms are constructed in the sizes, positions, and shapes called for by engineering and design requirements. The steel reinforcing is then placed and held in position by wires at its intersections. Devices known as chairs and spacers are used to keep the reinforcing bars apart and raised off t he form work. The size an number of the steel bars depends completely upon the imposed loads and the need to transfer these loads evenly throughout the building and down to the foundation. After the reinforcing is set in place, the concrete, a mixture of water, cement, sand, and stone or aggregate, of proportions calculated to produce the required strength, is placed, care being taken to prevent voids or honeycombs.
One of the simplest designs in concrete frames is the beam-and-slab. This system follows ordinary steel design that uses concrete beams that are cast integrally with the floor slabs. The beam-and-slab system is often used in apartment buildings and other structures where the beams are not visually objectionable and can be hidden. The reinforcement is simple and the forms for casting can be utilized over and over for the same shape. The system, therefore, produces an economically viable structure. With the development of flat-slab construction, exposed beams can be eliminated. In this system, reinforcing bars are projected at right angles and in two directions from every column supporting flat slabs spanning twelve or fifteen feet in both directions.
Reinforced concrete reaches its highest potentialities when it is used in pre-stressed or post-tensioned members. Spans as great as 100 feet can be attained in members as deep as three feet for roof loads. The basic principal is simple. In pre-stressing, reinforcing rods of high tensile strength wires are stretched to a certain determined limit and then high-strength concrete is placed around them. When the concrete has set, it holds the steel in a tight grip, preventing slippage or sagging. Post-tensioning follows the same principal, but the reinforcing is held loosely in place while the concrete is placed around it. The reinforcing is then stretched by hydraulic jacks and securely anchored into place. Prestressing is done with individual members in the shop and post-tensioning as part of the structure on the site.
In a typical tendon tensioning anchor assembly in such post-tensioning operations, there is provided a pair of anchors for anchoring the ends of the tendons suspended therebetween. In the course of installing the tendon tensioning anchor assembly in a concrete structure, a hydraulic jack or the like is releasably attached to one of the exposed ends of the tendon for applying a predetermined amount of tension to the tendon. When the desired amount of tension is applied to the tendon, wedges, threaded nuts, or the like, are used to capture the tendon and, as the jack is removed from the tendon, to prevent its relaxation and hold it in its stressed condition.
In such post-tension construction, the tendons are anchored and cut off just inside the face of the structure in what are termed “pockets”. The “pockets” surrounding the tendon end are filled with a concrete grout. A “pocketformer” is placed in the concrete adjacent to the face of the structure and against an end of the terminal anchor. After the concrete is suitably hardened, a form board is removed and the pocketformer is removed so as to expose the pocket. The ends of the tendon extend outwardly of the pocket. After the tensioning has occurred, the pocket is then filled with a concrete grout so as to be flush with the face of the structure.
FIG. 1
shows a pocketformer
10
as used in the prior art. This pocketformer
10
has a frustoconical surface
12
formed on the exterior of the pocketformer
10
. The frustoconical shape
12
will define the pocket. A central tubular member
14
is formed within the interior of the frustoconical portion
12
. One end
18
of the tubular member
14
will extend into the central bore of the anchor. The interior
16
of the tubular member
14
will allow the tendon to extend therethrough. Struts
20
extend between the tubular member
14
and the frustoconical portion
12
. The tubular member
14
is generally centered within the interior of the frustoconical portion
12
. The surface of the anchor will abut the narrow end of the frustoconical portion
12
. The wide end of the frustoconical portion will abut a surface of a form board. The tubular member
14
extends through a hole formed in the form board. As such, the tendon will extend outwardly of the form board during the formation of the concrete structure.
One of the problems with the pocketformer
10
, as shown in
FIG. 1
, is the inability to properly secure the anchor relative to the pocketformer
10
. In conventional practice, long threaded members will extend through holes in the anchor member and be attached to the form board. After the concrete is hardened, it will be necessary to remove the threaded members or nails. If these items are not removed, then corrosion can occur and rust patterns will form on the facing surface of the concrete structure. Furthermore, the use of nails or threaded members for securing the anchor relative to the form board is a time consuming and labor-intensive operation. As such, a need has developed so as to allow the anchor to be removably secured to the pocketformer during the installation of the pocketformer.
In the past, various patents have issued relating to pocketformers that serve to retain the pocketformer in place, against the form board, during the installation of the anchor. For example, U.S. Pat. No. 3,844,697, issued on Oct. 29, 1974 to H. J. W. Edwards describes an anchorage assembly including an anchor having a hollow housing and a means therein for engaging a stressing tendon passing therethrough. The hollow member is removably attached to the anchor housing and to the concrete formwork and fixing the relative position of the anchor housing to the formwork. The member surrounds the tendon between the anchor housing and the formwork and is adapted and arranged to be detached from the anchor housing after the concrete has set. A cavity forming spacer is provided which surrounds the member and is disposed between and seals against the anchor housing and the formwork to form a cavity in the concrete.
U.S. Pat. No. 3,956,797, issued on May 18, 1976 to Brandestini describes a pocketformer apparatus in which the pocketformer is initially threaded into the interior opening of a
Harrison & Egbert
Stephan Beth A.
LandOfFree
Pocketformer apparatus for a post-tension anchor system and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pocketformer apparatus for a post-tension anchor system and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pocketformer apparatus for a post-tension anchor system and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2900833