Surgery – Diagnostic testing – Sampling nonliquid body material
Reexamination Certificate
1998-09-01
2001-08-14
Seidel, Richard K. (Department: 3763)
Surgery
Diagnostic testing
Sampling nonliquid body material
C606S186000, C604S506000, C604S156000, C604S164120, C604S164010
Reexamination Certificate
active
06273861
ABSTRACT:
FIELD OF THE INVENTION
This invention relates in general to instruments for the automatic sampling of tissue from a patient. In particular, this invention relates to automatic tissue sampling or removing instruments actuated pneumatically.
BACKGROUND OF THE INVENTION
It is often desirable and frequently necessary to sample or test a portion of tissue from humans and other animals, particularly in the diagnosis and treatment of patients with cancerous tumors, pre-malignant conditions and other diseases or disorders. Typically, in the case of cancer, when the physician establishes by means of procedures such as palpation, x-ray or ultrasound imaging that suspicious circumstances exist, a biopsy is performed to determine whether the cells are cancerous. Biopsy may be done by an open or percutaneous technique. Open biopsy removes the entire mass (excisional biopsy) or a part of the mass (incisional biopsy). Percutaneous biopsy, on the other hand, is usually done with a needle-like instrument and may be either a fine needle aspiration (FNA) or a core biopsy. In FNA biopsy, individual cells or clusters of cells are obtained for cytologic examination and may be prepared such as in a Papanicolaou smear. In core biopsy, as the term suggests, a core or fragment of tissue is obtained for histologic examination which may be done via a frozen section or paraffin section. The type of biopsy utilized depends in large part on circumstances present with respect to the patient and no single procedure is ideal for all cases. However, core biopsy is extremely useful in a number of conditions and continues to be used frequently by the medical profession.
To arrive at a definitive tissue diagnosis, intact tissue is needed from an organ or lesion within the body. In most instances, only part of the organ or lesion need be sampled. However, the portions of tissue obtained must be representative of the organ or lesion as a whole. In the past, to obtain tissue from organs or lesions within the body, surgery had to be performed to locate, identify and remove the tissue. With the advent of medical imaging equipment (x-rays and fluoroscopy, computed tomography, ultrasound, nuclear medicine, and magnetic resonance imaging) it has become possible to identify small abnormalities even deep within the body. However, definitive tissue characterization still requires obtaining adequate tissue samples to characterize the histology of the organ or lesion. For example, mammography can identify non-palpable (not perceptible by touch) breast abnormalities earlier than they can be diagnosed by physical examination. Most non-palpable breast abnormalities are benign; some of them are malignant. When breast cancer is diagnosed before it becomes palpable, breast cancer mortality can be reduced. However, it is often difficult to determine if pre-palpable breast abnormalities are malignant, as some benign lesions have mammographic features which mimic malignant lesions and some malignant lesions have mammographic features which mimic benign lesions. Thus, mammography has its limitations. To reach a definitive diagnosis, tissue from within the breast must be removed and examined under a microscope. Prior to the late 1980's, reaching a definitive tissue diagnosis for non-palpable breast disease required a mammographically guided localization, either with a wire device, visible dye, or carbon particles, followed by an open, surgical biopsy utilizing one of these guidance methods to lead the surgeon to the non-palpable lesion within the breast.
Open surgical breast biopsies have many drawbacks. They can be disfiguring, expensive (in terms of direct costs to the patient and indirect costs to society from the patient being away from work), and are imperfect (the error rate for surgical biopsy has been reported to be from 2% to 22%). For example, a localization wire can be incorrectly placed by the radiologist. Even if properly placed, the efficacy of the biopsy may be marred by poor tissue selection by the surgeon, in which the lesion is not harvested. A properly harvested lesion may still suffer from the result of having the wrong section prepared for analysis.
Any of these errors will lead to an incorrect diagnosis of the lesion. Open surgical biopsies also carry a small mortality risk (due to the risks of anesthesia) and a moderate morbidity rate (including bleeding, infection, and fracture or migration of the localizing wire). In cases where multiple lesions are present in the breast, a surgeon is reluctant to biopsy each lesion due to the large tissue mass that must be extracted with each lesion. The most convenient lesion is taken which most often results in an incomplete diagnosis. Finally, all of this must be considered in the context of the frequency of procedures such as breast biopsies. In the United States, alone, it is estimated that open, surgical breast biopsies are performed on over 500,000 women annually. A less invasive alternative has long been sought.
A well known instrument used quite extensively for core biopsies in the past is manufactured by Travenol Laboratories of Deerfield, Ill., and is sold under the mark “TRU-CUT.” This manual biopsy instrument at one time enjoyed as much as 98% of the market for such devices. As disclosed in U.S. Pat. No. 3,477,423, the instrument comprises a two-piece assembly: an outer cutting cannula mounted to one hub member and an inner stylet with a sampling notch ground into it mounted to a second hub, with the hubs being slidably interlocked. The instrument is assembled and placed into the body with the outer cutting cannula just to the rear of a lancet point or beveled distal end of the stylet. Upon inserting the device up to or in front of the area to be biopsied, advancement of the assembly is halted. The stylet is manually advanced distally of the cannula with the cannula held stationery. Upon advancement of the stylet, the specimen notch is exposed. Tissue surrounding the stylet prolapses into the specimen notch and the cutting cannula is then manually advanced distally over the stylet, slowly shearing off the tissue entrapped in the stylet's specimen notch. The instrument is then either (a) withdrawn and the stylet advanced distally to expose the tissue for preparation for study or (b) left in place and only the stylet is proximally removed from within the cannula so a determination of successful sampling may be made. If the sampling was not successful, the stylet may be reinserted into the cannula, which remains positioned within the patient, and an attempt to reposition the assembly of stylet and cannula and repeat sampling can be made.
Such a technique using this basic design of a biopsy instrument is referred to as a manual technique. One drawback to the manual technique is that it requires a great deal of manual dexterity and motor coordination, along with the use of both hands, to advance the stylet while maintaining the position of the cannula and then to maintain the position of the stylet while advancing the cannula. Another drawback is that the cannula is advanced relatively slowly, resulting in an extremely poor cutting action and allowing the surrounding tissue an opportunity to collapse, thus making no use of the stored kinetic energy in the material being severed. Further disadvantages are encountered when the tissue volume to be sampled contains areas of higher density than that of surrounding tissue, such as areas of calcification commonly associated with certain types of cancerous growths. A manually inserted sampling device is often incapable of penetrating the denser area of tissue which merely deflects the course of the cannula/stylet structure around the dense area and into the more compliant surrounding tissue.
In the late 1980's, two different stereotactic guidance systems were modified to allow the guiding portion of each system to accommodate spring powered devices such as the Biopty® (Bard Radiology) gun. As used herein, the term “gun” to refer to tissue sampling devices for “one-handed” operation refers to a design common to ma
Bates James S.
Haaga John
Hawkins Harold G.
Hoffman Keith E.
Nishtala Srinivas
Kenyon & Kenyon
Maynard Jennifer
Sci-Med Life Systems, Inc.
Seidel Richard K.
LandOfFree
Pneumatically actuated tissue sampling device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pneumatically actuated tissue sampling device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pneumatically actuated tissue sampling device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2486522