Fluid handling – Systems – With flow control means for branched passages
Reexamination Certificate
2002-04-12
2004-08-17
Fox, John (Department: 3753)
Fluid handling
Systems
With flow control means for branched passages
Reexamination Certificate
active
06776192
ABSTRACT:
FIELD OF THE INVENTION
The present invention pertains to a system for mounting a plurality of fluid control valves to a common manifold and, more particularly, to a plug-in mounting system for pneumatic control valves that includes plug-in connection for both the pneumatic connections and the electrical connections.
Manifolding for pneumatic control valves is well known and provides a convenient and cost effective method for supplying pneumatic pressure for the operation of multiple devices. The manifold will typically carry a stack of pneumatic valves mounted in side-by-side relation with the manifold having common air supply and exhaust air channels for all of the valves. The manifold may also include a common pilot pressure supply conduit. It is also known to provide the manifold with a common electric power supply line including individual electrical connections to each valve to supply operating power such as for the valve solenoids. One prior art pneumatic supply manifold for a valve stack assembly is shown in U.S. Pat. No. 5,341,846.
Prior art manifolding systems may still require the use of connecting end plates, screws, O-rings, gaskets and locking clips, all of which add to the complexity of mounting and demounting of valves to the manifold. The above-identified patent also discloses a collet construction for the inlet and outlet ports in a pneumatic valve that simplifies pneumatic connections, including connections to a manifold. Furthermore, U.S. Pat. Nos. 5,222,715 and 6,016,838 show a unique pneumatic valve construction utilizing a half shell design in which two mirror image halves allow flow channels and internal component compartments to be molded in the shells into which the valve elements are inserted before the shells are ultrasonically welded together. This pneumatic valve construction provides substantially enhanced performance in a much smaller valve body. The inlet and outlet ports of this pneumatic valve also utilize the connecting collet construction described above to enhance connections to both a manifold and to the pneumatic lines from the valve to the pneumatic devices being operated.
SUMMARY OF THE INVENTION
In accordance with the present invention, a manifold system, particularly adapted to utilize the prior art pneumatic valves described above, provides a unique push-on, plug-in connection and similar easy release that quickly makes both the pneumatic connections and the electrical connections to the manifold without the need for any tools whatsoever.
The manifold mounting system of the present invention is particularly adapted for use with fluid control valves of the type that have an enclosing valve body, such as that using the above-identified half shell construction, which valve body includes a generally flat mounting face that defines fluid inlet and outlet openings. In a typical pneumatic valve, the fluid inlet and outlet openings accommodate the supply of pressurized air and the exhaust thereof respectively. The manifold comprises a manifold body that has an attachment face for a plurality of valve bodies, and the attachment face includes a plurality of face portions defining respective fluid inlet and outlet connector groups. Each connector group is adapted to make fluid connection to the fluid inlet and outlet openings in a valve mounting face of one valve body in response to relative connecting movement of the valve mounting face and the manifold face portion toward one another on a line generally perpendicular to the faces. The system includes a latching mechanism that is responsive to the connecting movement to complete the fluid connection and establish a locked position to lock the valve body to the manifold body in face-to-face relation. The latching mechanism is also responsive to manual deflection to unlock the valve body for disconnection and removal from the manifold.
In a preferred embodiment, the latching mechanism comprises a latch plate that is slidably attached to the attachment face portion of the manifold and is moveable in the plane thereof between the locked position and an unlocking position. Locking detents on the latch plate are adapted to be received in slots in the valve body in the locked position, and a resilient biasing device operates to interconnect the latch plate and the manifold body to bias the latch plate toward the locked position. In the preferred embodiment, the manifold face portion includes a latch plate track having undercut holddown surfaces on opposite sides of the track that extend parallel to the line of slide plate movement, and the slide plate includes complementary angled side edge surfaces that are adapted to slidably engage the holddown surfaces in a dovetail connection.
The latch plate locking detents comprise a pair of hook members that extend upwardly from opposite longitudinal ends of the latch plate, and the valve body includes a pair of locking recesses that are alignable with the hook members in the unlocking position of the latch plate in response to connecting movement, the hooks being moveable into locking engagement in the recesses in the valve body in response to biasing movement of the latch plate to the locked position. Preferably, the biasing device comprises a compression spring captured between one end of the latch plate and an end face of the manifold body. Either the hook members on the latch plate or the locking recesses in the valve body include inclined lead-in surfaces that are operative to impose a counter bias force on the biasing device in response to connecting movement to initially move the latch plate to the unlocking position.
The fluid inlet and outlet connectors on the attachment face portions of the manifold body comprise integral tubular extensions that extend generally perpendicular to the face portions and are adapted to be received in the respective fluid inlet and outlet openings in the valve body mounting face. Preferably, the tubular extensions extend from the face portion farther than the locking detents to provide initial alignment of the valve body with the manifold face portion. The valve body mounting face also preferably includes a plug-in electrical connector, and the manifold attachment face portion includes a complementary contact slot for the electrical connector. A bus bar may be mounted inside the manifold body to provide electrical connections to the contact slots in the manifold face portions. The manifold body may also include a common fluid inlet and outlet section at one end of the body that provides a common fluid supply inlet, a common fluid exhaust outlet, and a common connector for the bus bar. The inlet and outlet connector groups in the manifold face portions each includes a supply connector, an exhaust connector and a pilot supply connector, and the manifold body common section includes a common pilot fluid supply inlet.
Various other objects, features and advantages of the invention will be made apparent from the following description taken together with the drawings.
REFERENCES:
patent: 3875959 (1975-04-01), Bouteille
patent: 4224957 (1980-09-01), Darves et al.
patent: 6363970 (2002-04-01), Wolter
patent: D458985 (2002-06-01), Kleffmann
patent: 6427723 (2002-08-01), Bogdanowicz et al.
patent: 6450202 (2002-09-01), Bogdanowicz
patent: 6453948 (2002-09-01), Notz et al.
patent: 2002/0174905 (2002-11-01), Latino et al.
Andrus Sceales Starke & Sawall LLP
Fox John
Mead Fluid Dynamics, Inc.
LandOfFree
Pneumatic valve and manifold mounting system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pneumatic valve and manifold mounting system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pneumatic valve and manifold mounting system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3295005