Measuring and testing – Tire – tread or roadway – Tire inflation testing installation
Reexamination Certificate
2000-08-18
2003-04-08
McCall, Eric S. (Department: 2855)
Measuring and testing
Tire, tread or roadway
Tire inflation testing installation
C073S146400, C340S445000, C340S447000
Reexamination Certificate
active
06543279
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention relates to pneumatic tires having transponders, with emphasis on “passive” transponders which derive their operating power from an external radio frequency (RF) source, and more particularly to transponders used for tire identification and transmission of pressure and/or temperature data.
BACKGROUND OF THE INVENTION
In the manufacture of pneumatic tires, it is desirable to uniquely identify each tire as soon as possible during the course of its fabrication. This is generally done by assigning an identification (ID) number to each tire. The ability to uniquely identify tires throughout their manufacture is particularly valuable in quality control in order that the source of manufacturing problems can readily be ascertained. For example, statistical process control and other methods can be used with tire identification to detect process parameters that are going out of specification to detect machinery wear, failure, or maladjustment. The identification information should be easily discernible throughout the manufacturing process, including throughout post-manufacturing (e.g., inventory control) stages.
It is also beneficial to be able to uniquely identify a tire throughout its service life (use), for example for warranty determination, and retreading of the tire should not adversely affect the ability to identify the tire. It is also important that the tire identification be readily discernible when the tire is mounted on a steel or aluminum rim (as is normally the case), including when the rim is one of a pair of rims in a dual wheel assembly (as is common with tractor trailers).
Aside from being able to uniquely identify a tire at various stages in its manufacture and service life, it is beneficial to be able to monitor tire pressure when the tire is in use. As is known, proper tire inflation is important to proper tire performance, including road-handling, wear, and the like.
Transponder or transceiver type identification systems are well known, and generally are capable of receiving an incoming interrogation signal and responding thereto by generating and transmitting an outgoing responsive signal. The outgoing responsive signal, in turn, is modulated or otherwise encoded so as to uniquely identify or label the particular object to which the transponder element is affixed. An example of such a transponder type identification system is disclosed in U.S. Pat. No. 4,857,893, issued Aug. 15, 1989 to Carroll and incorporated in its entirety herein. This patent describes a transponder device which receives a carrier signal from an interrogator unit. This carrier signal, of frequency F, is rectified by a rectifying circuit in order to generate operating power. Alternatively, the addition of a hybrid battery allows device to be converted into a self-powered beacon device. Logic/timing circuits derive a clock signal and second carrier signal of frequency F
from the received carrier signal. A uniquely-identifying data word is stored in a Programmable Read-Only Memory (PROM). The data word is encoded and mixed with the carrier signal in a balanced modulator circuit, the output of which is transmitted to the interrogator unit where it is decoded and used as an identifying signal. All electrical circuits of the transponder device are realized on the same monolithic semiconductor chip which may be implemented as a Complementary Metal Oxide Semiconductor (CMOS) device.
U.S. Pat. No. 4,578,992 issued Apr. 1, 1986 to Galasko, et al. and incorporated in its entirety herein, discloses a tire pressure indicating device including a coil and a pressure-sensitive capacitor forming a passive oscillatory circuit having a natural resonant frequency which varies with tire pressure due to changes caused to the capacitance value of the capacitor. The circuit is energized by pulses supplied by a coil positioned outside the tire and secured to the vehicle, and the natural frequency of the passive oscillatory circuit is detected. The natural frequency of the coil/capacitor circuit is indicative of the pressure on the pressure-sensitive capacitor.
U.S. Pat. No. 4,758,969 issued Jul. 19, 1988 to Andre, et al. and incorporated in its entirety herein, discloses a device for measuring brake temperature and tire pressure on sets of wheels. The temperature sensors are located on a fixed part of each wheel, and communicates with the central computer by means of wires. A pressure sensor is mounted on each wheel along with electronic means for frequency coding the pressure data. Between each wheel and the fixed part of each wheel is a coupling element, preferably a rotating transformer for communicating with the central tire pressure measuring system computer. The frequency coding electronics preferably include a voltage/frequency converter to convert a voltage constituting the signal delivered by the sensor into a frequency which is a function of said voltage.
The use of radio frequency (RF) transponders, located either within the tire or on a rim for the tire, in conjunction with electronic circuitry for transmitting a RF signal carrying tire inflation (pressure) data, is also well known.
An example of a RF transponder suitable to be installed in the carcass of a pneumatic vehicle tire is disclosed in PCT International Application Publication No. WO 96/064747 issued Mar. 7, 1996 to Andrew, et al. and incorporated in its entirety herein. This patent describes a tyre condition monitoring system with a battery-powered (“active”) transmitter unit in each vehicle wheel for sensing temperature, pressure and rotation of the wheel. A common problem to be dealt with in such active systems is the life of the battery (power supply), so the transmitter unit is arranged so that power is only applied during the sensing and transmission of data, and intervals between transmissions of data can be varied depending on whether rotation of the wheel has been sensed. The transmitter unit (RF transponder) includes a pressure sensor (either piezoresistive or silicon capacitive), a thermistor for temperature sensing and an input for measuring the battery voltage. These sensor measurements are periodically checked, being routed one at a time to an analog-to-digital converter (A/D) by a multiplexer. A microprocessor receives the digitized readings, preferably converts them to temperature and pressure units, and periodically transmits them. The microprocessor has RAM, ROM and inputs including the A/D, a clock, a timer, and centrifugal detector. It controls overall operation of the transmitter unit. An identification number (ID) is stored in non-volatile ROM memory, and calibration constants for data conversion are stored in battery-maintained RAM. In normal operating mode, the RF transmission, when required, includes the ID, the temperature reading, and the pressure reading. The number values in the transmission string are digitized and encoded for error correction using Manchester coding. The calibration constants are preferably used to convert the readings from voltages to suitable temperature and pressure units, but may alternatively be stored in the vehicle receiving unit and used therein to convert transmitted voltage readings. In order to minimize battery use by minimizing transmission times, the calibration constants are only transmitted on demand from the receiving unit, preferably upon tire installation. The calibration constants include one constant to convert temperature sensor voltage to degrees, and two constants to convert pressure sensor voltage to pressure units and also correct for the pressure sensor's temperature coefficient.
An example of a RF transponder suitable to be installed in the carcass of a pneumatic vehicle tire is disclosed in U.S. Pat. No. 5,451,959 issued Sep. 19, 1995 to Schuermann and incorporated in its entirety herein. This patent describes a transponder system comprising an interrogation unit for communicating with a plurality of responder units. The responder unit contains a parallel resonant circuit having a coil and a capacitor for recep
Black Donald Lee
Brown Robert Walter
Pollack Richard Stephen
Yones Dale Lee
Cohn Howard M.
McCall Eric S.
The Goodyear Tire & Rubber Company
LandOfFree
Pneumatic tire having transponder and method of measuring... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pneumatic tire having transponder and method of measuring..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pneumatic tire having transponder and method of measuring... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3085503