Signals and indicators – Horns – whistles and compressional wave generators
Reexamination Certificate
2001-10-15
2003-06-17
Fulton, Christopher W. (Department: 2859)
Signals and indicators
Horns, whistles and compressional wave generators
C116S138000, C116S140000, C116SDIG007, C137S625470
Reexamination Certificate
active
06578511
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a signaling apparatus. More particularly, the present invention is directed to an all-purpose, pneumatic powered signaling device adaptable for effectively transmitting signals above and below water.
It is well known that divers may use one or more tanks of compressed air to extend their time beneath the surface of the water. Such divers, often referred to as “scuba” (self-contained, underwater, breathing apparatus) divers, would benefit greatly if they were able to communicate with other divers below the water's surface. It would also be desirable for scuba divers to be able to communicate with others when they return to the surface of the water. It would be ideal if one device could be used for both purposes.
U.S. Pat. No. 4,950,107 to Hancock et al., which patent is incorporated herein by reference in its entirety, discloses an audible alarm device for divers. More specifically, the audible alarm device consists of a pneumatically operated horn activated by a push button. The air source for the audible alarm device is a tap off the line from a scuba tank to a buoyancy compensator vest. While the audible alarm device is well suited for attracting the attention of others once the diver has surfaced, it is of little or no use while the diver is submerged.
Effective underwater signaling from one diver to another is normally performed with a percussion device of some description. For example, U.S. Pat. No. 5,400,736 to Gold discloses a hand-operated signaling device while U.S. Pat. No. 4,095,667 to Mahig et al. and U.S. Pat. No. 5,302,055 to Johnson disclose pneumatically operated pistons which impact on a diaphragm. It will be appreciated that in the later patents, the mechanical impact of the piston on the diaphragm permits the diaphragm to vibrate or reverberate, thus creating a pressure wave that can be heard/felt by other submerged divers.
Thus, pneumatic signaling devices, which work in either air or water, are known. Several attempts have been made to fabricate an all-purpose signaling device. For example, U.S. Pat. No. 4,998,499 to Norbeck discloses a pneumatic signaling device designed to operate both above and below the water. More specifically, the '499 patent employs a vibrating diaphragm inducing impulses in an attached air horn; the diaphragm and air horn can operate underwater by virtue of a lid, which lid can be detached from the signaling device when operating in air. In contrast, U.S. Pat. No. 4,852,510 to Joseph et al, which discloses a scuba whistle, which can be operated both above and below the surface of the water.
However, manufacturers have not been able to design a pneumatic signaling devices that works “equally” well in air and water for a number of reasons. For example, air horns that operate above the water are generally inoperable beneath the water. For the sound generated by such air horns to carry any distance, it is necessary to employ a source of compressed air, which air source is conventionally carried as part of the horn assembly. Likewise, conventional whistles and bells are limited to signaling above water and are both cumbersome to carry and of limited range. Alternatively, it is known that when a piston impacts against a diaphragm, a percussion wave is created that will transmit above and below water. While a percussion wave may be felt some distance underwater, such devices are generally unsatisfactory for transmitting signals above water. Furthermore, there exists the need of providing a readily available source of compressed air capable of powering the piston. Moreover, even if the same source of compressed air can be employed to power air horn and piston signaling devices, the optimum mass flow rate of air needed to operate a pneumatic piston signaling device is substantially greater than that needed to operate an air horn signaling device.
It is clear that there exists a need in the art for an improved signaling device equally adaptable for effectively transmitting signals above and below water. Such a device should be as small as possible and,; preferably, not require a separate compressed air power source that could add weight and inhibit movement of a diver. Preferably, the signaling device would be adaptable to employ a diver's own source of compressed breathing air. As will become apparent, the present invention provides an all-purpose signaling device capable of utilizing a scuba diver's air supply to power the device to transmit signals above and below the water.
SUMMARY OF THE INVENTION
There is a critical need in the art for an all-purpose signaling device that divers can utilize above as well as below the surface of the water.
The present invention is directed to an all-purpose, pneumatic powered signaling device that can readily be used to signal others above and below the water. The device employs a selector switch capable of directing a stream of compressed air to either a first component for signaling above water or to a second component for signaling under water. The all-purpose pneumatic signaling device is preferably integrated into the air flow passageway leading from a diver's source of compressed breathing air, i.e., breathing tank, and the diver's buoyancy compensator device for powering the buoyancy compensation system. When the selector switch is set for above water use and the signaling device is activated, compressed air from the diver's tank at a first flow rate is directed into an air horn for generating an audible signal through the air. Alternatively, when the selector switch is set for below water use and the device is activated by the diver, compressed air at a second flow rate is directed into an enclosed cylinder and functions to drive a piston into repeated impact against a rigid diaphragm, causing the diaphragm to oscillate and transmit a percussion signal wave through the water which can be heard, i.e., felt, by other divers in the vicinity.
A significant advantage of the present invention resides in the ability to actuate the all-purpose signaling device by merely twisting or moving a selector knob to “set” the device in either the above or under water mode of operation. The signal can then be initiated by merely pressing an actuator button. The signaling device may be “set” for underwater transmission before the diver proceeds underwater or may be “set” immediately prior to use. When the diver returns to the surface, he may rotate the selector switch to “set” the device for air transmission.
Because the underwater component of the all-purpose signaling device includes only the single moving piston, there is little chance of the device malfunctioning regardless of the depth at which the device is employed. There is also no need for the diver to repeatedly depress the actuator button to continue to transmit a signal. A unique system of air flow passageways extending within the cylinder directs the flow of compressed air to sequentially propel the piston against the diaphragm or move the piston out of contact with the diaphragm before automatically initiating another cycle. As a result, one depression of the actuator button is sufficient to transmit periodic percussion waves that may be “heard” by other divers in the vicinity.
Advantageously, the present invention employs a quick-disconnect attachment assembly for joining the signaling device to a diver's existing airflow system, which permits the signaling device to be easily connected and disconnected in the air line between the diver's air tank and the diver's buoyancy compensation system via a power inflator. This allows compressed air to continue to pass uninterrupted from the diver's tank to the power inflator while, at the same time, permitting a small portion of the compressed air to be rerouted to selectively initiate either an above or below water signal.
According to one aspect, the present invention provides a pneumatic signaling device operable above and below the surface of the water from a source of compressed gas. Pref
Dexter James T.
Hancock David A.
Fulton Christopher W.
Hoolahan Amanda J
LandOfFree
Pneumatic signaling device for divers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pneumatic signaling device for divers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pneumatic signaling device for divers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3112743