Pneumatic actuator with elastomeric membrane and low-power...

Motors: expansible chamber type – With motive fluid valve – Electrically operated

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C091S454000

Reexamination Certificate

active

06807892

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to microdevices, and more particularly to pneumatic actuators and micro-valves.
BACKGROUND OF THE INVENTION
Microdevices, such as microfluidic control devices and micromachines, are used in a wide variety of modern devices. Currently, microdevices are used in automobiles, medical instrumentation, or process control applications, and in conjunction with appropriate sensors can provide accurate determinations of pressure, temperature, acceleration, gas concentration, and many other physical or chemical states. Microfluidic control devices include micro-valves for handling gases or liquids, flow gauges, and ink jet nozzles, while micromachines include micro-actuators, movable micro-mirror systems, or even tactile moving assemblies.
Large arrays of micro-valves have particular utility in conjunction with air jet paper transport systems or other material processing systems that must precisely control position and velocity of paper or other objects moving through the system. Commonly, material processing systems control object movement by physically engaging the object with a separate object drive mechanism that moves the object at a predetermined velocity along a predetermined path. For example, gear driven ratchets, rollers, hooks, or conveyors are widely employed to move objects as diverse as paper, semiconductors, plastics, or steel by mechanically engaging the objects, and moving the engaged objects along a desired path at a fixed velocity. While commonplace, mechanical or frictional engagement of objects does have a disadvantage of requiring direct physical contact with an object. In contrast to mechanical or frictional transport systems, object drive mechanisms based on various fluid support techniques have long been employed to move delicate objects without requiring solid mechanical contact. For example, instead of using conventional belts, conveyors or rollers, paper moving through xerographic copier systems can be supported on a laminar air flow, or uplifted and moved by directed air jets. This form of fluid support is particularly advantageous, for example, when sheets of paper carrying unfixed toner images must be moved between a photoconductive drum and a fusing station where the toner image is fixed.
One type of micro-valve used in air jet systems is an electrostatic flap valve, which controls the flow of air passing through a port (orifice) formed in a pressure wall separating a high pressure air source and a paper transport passage. Each electrostatic flap valve typically includes a fixed electrode mounted on the downstream surface of the pressure wall surrounding the port, and a flap member including a flexible electrode that is attached at one end to the pressure wall. Flow through the flap valve is controlled by applying a suitable potential to the fixed and flexible electrodes. To open the flap, thereby allowing fluid to flow from the high-pressure source to the transport passage through the orifice, the potential is removed (turned off), allowing the pressure differential to push the flap open. To subsequently close the flap, the potential is applied (turned on), thereby causing electrostatic attraction between the fixed and flexible electrodes to pull the flap against the pressure wall to close the orifice. One advantage of electrostatic flap valves is that significant power is expended only during valve opening or closing. That is, when flap valves are in an open state or in a closed state, no current flows to maintain either state. Only displacement current flows during valve state transition between the opened and closed states.
A problem with the use of electrostatic flap valves to control fluid flow between high and low pressure regions is that a large force, and therefore a high voltage potential, is required to close the flap against the flow passing through the orifice between the high and low pressure regions. Once the flap is closed, the fixed and flexible electrodes are in very close proximity, and the voltage potential needed to maintain the closed state is relatively small, essentially because the electrostatic force is inversely proportional to the square of the distance between electrodes. However, when the flap is opened, the fixed and flexible electrodes are far apart, and a substantially larger voltage potential is needed to pull the flap closed. Further, the fluid flowing through the orifice applies a force against the flap that further increases the needed voltage potential, and if large enough, this force can prevent closure even when extremely high voltages are used. These voltages are ultimately limited by breakdown mechanisms between the fixed and flexible electrodes. Accordingly, when electrostatic flap valves are utilized in this manner, the pressure gradient across the high and low-pressure regions is limited by the available voltage potential to allow closure of the flap.
Microdevice actuators often include micromachined monocrystalline structures or piezoelectric devices to perform a desired operation, such as to position a micro-mirror in a fiber-optic micro-switch. However, both monocrystalline structures and piezoelectric devices are relatively expensive to produce, and require relatively high voltage sources to produce required positioning forces.
What is needed is a cost effective pneumatic valve and a cost effective pneumatic actuator that can be driven using low voltages and low power. What is also needed is an inexpensive pneumatic valve for controlling high-pressure fluid flows.
SUMMARY OF THE INVENTION
The present invention is directed to a low-cost pneumatic actuator that facilitates both low-power micro-valve and low-power micro-actuator functions by utilizing a pair of electrostatic flap valves to control the flow of a fluid into an expandable chamber such that the electrostatic flap valves are only closed under equilibrium (i.e., zero flow) conditions or approximate thereto (e.g., zero to 10% of the full flow rate) such that minimal force is needed to close the valves.
The pneumatic actuator includes a housing defining a cavity, an elastomeric membrane (e.g., a silicone film) mounted over the cavity to form an expandable chamber, and a pair of electrostatic flap valves for controlling fluid flow into and out of the expandable chamber. According to an aspect of the present invention, a first electrostatic flap valve is mounted inside the expandable chamber such that it is positioned to selectively block fluid flow into the chamber through a first orifice, and a second electrostatic flap valve is mounted outside the expandable chamber such that it is positioned to selectively block fluid flow out of the chamber through a second orifice. In one embodiment, the first orifice is connected to a high-pressure source, and the second orifice is connected to a low-pressure source (e.g., to the external atmosphere through a vent hole formed in an upper wall of the housing).
During operation, the elastomeric membrane is distended (stretched) by releasing the first electrostatic flap valve (i.e., causing an associated control circuit to turn off the control signals transmitted to the first flap valve) while maintaining the second electrostatic flap valve in a closed position, thereby allowing the high pressure gradient across the first orifice to push the first flap valve open. When the pressure gradient across the electrostatic membrane is balanced by the elastic restoring force of the distended membrane, flow into the cavity stops. It then requires negligible electrostatic force to close the first flap valve. Conversely, the elastomeric membrane is subsequently collapsed by releasing the second electrostatic flap valve while maintaining the first electrostatic flap valve in a closed position, thereby allowing the high pressure inside the expandable chamber to escape through the second orifice. According to the present invention, the first electrostatic flap valve is only actuated to block the first orifice when an internal pressure of the expandable chamber is approximately equal to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pneumatic actuator with elastomeric membrane and low-power... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pneumatic actuator with elastomeric membrane and low-power..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pneumatic actuator with elastomeric membrane and low-power... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3281723

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.