Plug system for capping cell vents in a storage battery and...

Chemistry: electrical current producing apparatus – product – and – Means externally releasing internal gas pressure from closed... – Elastic – resilient or spring biasing valve means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S086000, C429S089000

Reexamination Certificate

active

06376119

ABSTRACT:

This invention concerns a plug system for closing cell vents in a storage battery and a battery cap for use in the plug system.
Storage batteries consist of two chemically different electrodes that are arranged in a case with a cap in a mostly fluid or concentrated electrolyte. In the lead batteries generally used in motor vehicles, the electrodes are made of lead and are designed to be grid-shaped. The grid mesh are filled with lead dioxide PbO
2
on the positive side and with so-called spongy lead, finely dispersed porous lead, on the negative side. Sulfuric acid H
2
SO
4
is generally used as the electrolyte. In lead batteries, especially for motor vehicles, several cells are connected in a row. One side of the first cell and one side of the last cell has a contact pole that projects through the cap on the case. During the charging processes, chemical reactions take place that cause gas to be formed. Most storage batteries have gas outlet vents in their caps.
To prevent and reduce electrolyte evaporation, on one hand, and to be able to send the gases formed when the storage battery is overcharged outside into the air surrounding the battery before a critical excess pressure is reached inside the cells, the individual cells of a storage battery are generally closed by means of plugs designed as excess pressure valves. To prevent the batteries from exploding, two basic ways of degassing are known for removing the easily combustible gases created. One is to let off the gas directly via plugs that cap the individual cell vents, another is via a central gas line in which the individual cell vents are connected to one another via a transverse bore hole in the cap of the storage battery case. In the last degassing variation, the cell vents in the battery case above the channel made by the transverse vent are capped, are gas-tight and generally come out in the front of the case. In both ways of removing gas, the gases pass through a porous filter disk, a so-called frit, before leaving the battery, especially to prevent backfires inside the battery and the damage associated with them.
This invention is based on the problem of providing a plug system for capping the cell vents of a storage battery that consists of the fewest possible simple elements, with a combination of individual elements that can be adjusted to different battery designs, that can be adapted to meet the needs of individual batteries and that meet the requirements set for the main degassing variations, especially in terms of backfire protection and sealing. The plug system in the invention should also be very economical in terms of production, assembly and storage.
To solve this problem, this invention has proposed a plug system for capping the cell vents of a storage battery that consists of a plug body that can be used in a cell vent which holds a valve element and a plug, providing a normally closed, fluidic connection between the inside of the cells and the atmosphere surrounding the storage battery.
The plug system in the invention thus basically consists of three simple basic elements that bring with them low production, assembly and storage costs and a low expense in providing the corresponding technical manufacturing equipment and have no problem meeting the requirements for various storage battery designs and degassing variations.
In one advantageous embodiment of the invention, the plug body has at least one section that is reduced compared to the outer diameter of the plug body. This makes a basically annular projection on one end of the generating surface of the plug body which provides a basically annular stop surface lying on the outer front surface surrounding the cell vent of the storage battery cap and makes possible, for example, simple, precise insertion of the plug body into the cell vent. Advantageously, the storage battery cap has a negatively formed receptacle corresponding to the annular projection of the plug body which provides at least one front surface corresponding to the annular stop surface formed by the projection. The basically annular projection of the plug body can be used to attach the plug body in the cell vent. For this, the projection can have an attachment element on the outside, for example, or in the area of the projection in the cell vent that is glued, soldered or otherwise connected to the cap. Advantageously, the plug body can be inserted tightly, especially gas-tight in the cell vent. For this, the plug body has at least one sealing element, preferably an O-ring. According to one particularly advantageous embodiment of the invention, the sealing element is molded on the plug body and is, for example, a sealing ring injection-molded onto the plug body, and it can then be produced in a two-component process. Advantageously, the sealing element is arranged in an area of the plug body next to the annular projection. This guarantees that the plug body can be inserted safely into the cell vent and is gas-tight. Likewise, the annular projection of the plug body can have an area that at least partially holds the sealing element. Moreover, the projection can be designed to be conical, so that there is a guide when the plug body is inserted into the cell vent that can prevent it from being inserted incorrectly.
In another especially advantageous embodiment of the invention, the plug body has at least one section in the middle that is reduced compared to the outer diameter of the plug body, with at least one vent. Advantageously, the sections that are enlarged compared to the middle of the plug body are designed to be annular, so that a space is formed when the plug body is inserted between the middle, reduced section of the plug body and the battery case cap that provides a fluidic connection to the inside of the cells through at least one vent in the reduced section. Advantageously, the space formed by the reduced section in the middle part of the plug body and the battery case cap when the plug body is inserted is gas-tight. Advantageously, the sections connected to the reduced section in the middle of the plug body have a sealing element, preferably a molded O-ring.
In another advantageous embodiment of the invention, the plug body has an attachment element on the end facing the inside of the cells, with which the plug body can be attached in the cap. For this, the plug body has, for example, at least one projection that grasps behind the cap on the end. With the projection, the plug body is fixed when inserted in the cap and can no longer be removed from it. Advantageously, the plug body is held fast when inserted by pressing it into the cap. In this way, the plug body is securely attached, for one thing, and, for another, the most gas-tight insertion is made possible. In another especially advantageous embodiment of the invention, the plug body has a thread on at least one of the sections of the plug body next to the reduced section that matches a corresponding thread provided in the cap.
According to another advantageous embodiment of the invention, the plug body has a section inside to hold the valve element. In this way, the valve element can be placed in the plug body extremely simply with no problem. Advantageously, the section for holding the valve element is next to at least one vent in the generating surface of the plug body, so that the valve element normally caps the fluidic connection between the space formed by the reduced section of the plug body and the cap and the inside of the cell. Moreover, the vent in the generating surface of the plug body cannot be capped accidentally by the valve element. Advantageously, the section for the valve element forms a step on which the valve element can be mounted. In another advantageous embodiment of the invention, the generating surface of the section holding the valve element is designed to be slightly conical, so that the valve element can be fixed in the plug body by slight press-fitting. Likewise, it is possible for the valve element to have slightly conical outer walls, which make slight press-fitting possible in th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Plug system for capping cell vents in a storage battery and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Plug system for capping cell vents in a storage battery and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plug system for capping cell vents in a storage battery and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2862263

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.