Electrical connectors – With insulation other than conductor sheath – Plural-contact coupling part
Reexamination Certificate
1999-06-18
2001-11-27
Patel, Tulsidas (Department: 2839)
Electrical connectors
With insulation other than conductor sheath
Plural-contact coupling part
C439S660000
Reexamination Certificate
active
06322398
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates to a plug connector of an aircraft power supply device for the on-board power supply of aircraft, comprising a housing, which is divided so that it can be separated into at least two sections in the longitudinal direction, of which a first section, constituting the front housing element, has cylindrical first contact elements which, on the receiving side of the plugs, are embodied to be socket- or sleeve-shaped, and can be releasably connected on the side facing away from the plug receptacle with cylindrical second contact elements, such as plug sleeves, which extend from the second section of the housing, which forms the rear element, in which the second contact elements are connected with strands of a cable and encapsulated after having been connected.
Multi-conductor cables with plug connectors are used for the on-board power supply of aircraft, which are seated in a plug receptacle device arranged on board, which contains contact pins. A supply voltage of preferably 220 V, or respectively 112 V/400 Hz, as well as a d.c. voltage (28 V) for acknowledgements, are transmitted via the cables and plug connectors.
The plug connectors of known on-board power supplies respectively have a housing with bores, in which electrically conducting, cylinder-shaped bodies are arranged, which are connected on the inside of the housing with multi-conductor cables, and on their free outer ends are designed as sockets for receiving contact pins. The ends of the supply cables inserted into the plug connectors can be firmly connected with the electrically conducting cylinder-shaped bodies, wherein after assembly the empty space is filled with a sealing compound. In spite of their sturdiness, the housings of the plug connectors are often damaged on their front ends, for example by falling, so that further use is no longer possible. It can also occur that the sockets themselves are damaged. In all these cases the supply cable is cut off closely behind the plug connector in order to then firmly connect the strands with the cylinder-shaped body, embodied with sockets in the front free end of a new plug connector. If such a respective supply cable extends, for example, from a manual control panel, the length of the supply cable provided is normally limited to one to two meters, for example, so that only a limited number of replacements of plugs is possible until further cutting becomes impossible. In this case a new unit must be made available.
In order to supply an aircraft, for example, via the plug connector, the latter is plugged into the plug receptacle with contact pins, which is provided at the aircraft. It should be assured here, that the contact pins are maximally inserted into the sockets in order to assure the required output and signal transmissions through the plug connector to the aircraft. The output transmission, for example, can already take place with little contact. However, spark gaps are often formed, which lead to scorching. Moreover, in case of a fall, the contact pins and/or the sockets can be damaged if the contact pins have been only slightly inserted into the sockets.
If, for example, an aircraft runs over such a plug connector, there is the danger that the rear housing element becomes damaged. The result of this is that the entire plug connector must be replaced, i.e. it must be severed from the supply cable.
Moreover, with the known plug connectors, a step extends between the front element and rear housing element (DE 36 07 753 A1, DE 86 06 435 U1) which, when the plug is run over, can result in the breaking of the housing.
A plug connector of the type mentioned at the outset can be found in EP 0 236 923 B1. In order to make possible a simple change, or respectively replacement of damaged parts in case of damage to the front housing element, or respectively the first contact elements extending therein, it is provided that the first contact elements are releasably arranged in the first housing section. In this way damaged contacts can be replaced in the shortest time and, in particular in case of use at an airport, the damage can be repaired on the spot without having to accept long idle periods.
A corresponding plug can furthermore have a pilot contact for checking whether or not the plug connector has been correctly arranged in a plug receptacle.
Also known is a plug connector with a number of contact sockets arranged in an insulated body and with contact elements designed as a switch, wherein the switch is actuated by a hollow-cylindrical insulated pin projecting from a counter-plug element. The contact elements respectively consist of a conducting pin extending into a hollow cylinder and surrounded by resilient contact fingers. The contact fingers, pre-stressed by a spring, rest against the pin, by means of which a circuit with an indicator device is closed (U.S. Pat. No. 3,912,889).
In connection with otherwise known plug connectors which, however, are not suitable for the on-board power supply of aircraft, the housing can be assembled from half shells, which cannot be cast, and are connected in sections in a kind of groove-and-tongue connection (DE 33 13 144 C2).
The present invention is based on the problem of further developing a plug connector of the type mentioned at the outset in such a way, that damage to the front housing element as well as the rear housing element cannot result in having to replace the plug connector as a whole. In this connection the option of refurbishing housing elements themselves should be provided in particular which, however should be assembled in this way, but wherein heavy loads of, for example 10 t and more, no longer result in damage. It should moreover be assured that the front housing element does not melt in case of extensive heating of the first contact elements, or that, if this should be the case, a complete exchange is not necessary.
In accordance with the invention, the problem is essentially solved in that the front housing element consists of an outer shell body and of an insert, which is releasably arranged therein and has hollow-cylindrical receivers for the first contact elements. In this case the contact elements extend at least partially spaced apart from the hollow-cylindrical receiver receiving the contact element.
By means of the respective construction it is assured that cooling to the required extent can take place in the area of the first contact elements, which assures that, even if too powerful a current flows through the first contact elements, i.e. when a strong contact resistance is built up, melting of the front housing element does not occur because of the heating connected with this. It has been provided here in particular that the insert is made of a plastic material which is temperature-resistant to at 230° C. Granamid or Stanyl®, for example, can be used as the material.
But if melting should nevertheless occur because of the development of too high heat, only the receiver is affected by this, so that it would have to be replaced, while the outer shell body can be further used.
In accordance with a further development of the invention, the hollow-cylindrical receivers themselves are connected, spaced apart from each other, by strips. The insert should also be supported on the shell body by protrusions extending from the insert, such as strips extending in the longitudinal direction of the insert. The necessary “ventilation” of the front housing element is provided by means of this.
In accordance with a preferred embodiment of the invention, the shell body has protrusions, such as longitudinal strips, extending away from the exterior, whose outer surfaces extend flush in respect to the exterior of the rear housing element. It is assured by this that no step is formed between the front and rear housing elements, so that therefore a breaking of the plug connector is prevented if it is run over.
At least one switch element can extend in a known manner from the rear housing element, but in accordance with the invention this is fastened to a support plate w
Dennison, Scheiner Schultz & Wakeman
Patel Tulsidas
LandOfFree
Plug connector does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Plug connector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plug connector will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2608093