Compositions – Electrically conductive or emissive compositions
Reexamination Certificate
1998-12-09
2003-09-09
Kopec, Mark (Department: 1751)
Compositions
Electrically conductive or emissive compositions
C524S262000
Reexamination Certificate
active
06616863
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed to crystalline electrically conductive polymer precursors and crystalline conducting polymers and applications thereof.
BACKGROUND
Electrically conductive organic polymers emerged in the 1970's as a new class of electronic materials. These materials have the potential of combining the electronic and magnetic properties of metals with the light weight, processing advantages, and physical and mechanical properties characteristic of conventional organic polymers. Examples of electrically conducting polymers are polyparaphenylene vinylenes, polyparaphenylenes, polyanilines, polythiophenes, polyazines, polyfuranes, polythianaphthenes polypyrroles, polyselenophenes, poly- p-phenylene sulfides, polyacetylenes formed from soluble precursors, combinations thereof and blends thereof with other polymers and copolymers of the monomers thereof.
These polymers are conjugated systems which are made electrically conducting by doping. The doping reaction can involve an oxidation, a reduction, a protonation, an alkylation, etc. The non-doped or non-conducting form of the polymer is referred to herein as the precursor to the electrically conducting polymer. The doped or conducting form of the polymer is referred to herein as the conducting polymer.
Conducting polymers have potential for a large number of applications in such areas such as electrostatic charge/discharge (ESC/ESD) protection, electromagnetic interference (EMI) shielding, resists, electroplating, corrosion protection of metals, and ultimately metal replacements, i.e. wiring, plastic microcircuits, conducting pastes for various interconnection technologies (solder alternative), etc. Many of the above applications especially those requiring high current capacity have not yet been realized because the conductivity of the processable conducting polymers is not yet adequate for such applications.
To date, polyacetylene exhibits the highest conductivity of all the conducting polymers. The reason for this is that polyacetylene can be synthesized in a highly crystalline form (crystallinity as high as 90% has been achieved) (as reported in Macromolecules, 25, 4106, 1992). This highly crystalline polyacetylene has a conductivity on the order of 10
5
S/cm. Although this conductivity is comparable to that of copper, polyacetylene is not technologically applicable because it is a non-soluble, non-processable, and environmentally unstable polymer.
The polyaniline class of conducting polymers has been shown to be probably the most suited of such materials for commercial applications. Great strides have been made in making the material quite processable. It is environmentally stable and allows chemical flexibility which in turn allows tailoring of its properties. Polyaniline coatings have been developed and commercialized for numerous applications. Devices and batteries have also been constructed with this material. However, the conductivity of this class of polymers is generally on the low end of the metallic regime. The conductivity is on the order of 10
9
S/cm. Some of the other soluble conducting polymers such as the polythiophenes, poly-para-phenylenevinylenes exhibit conductivity on the order of 10
2
S/cm. It is therefore desirable to increase the conductivity of the soluble/processable conducting polymers, in particular the polyaniline materials.
The conductivity (&sgr;) is dependent on the number of carriers (n) set by the doping level, the charge on the carriers (q) and on the interchain and intrachain mobility (&mgr;) of the carriers.
&sgr;=
nq&mgr;
1
Generally, n (the number of carriers) in these systems is maximized and thus, the conductivity is dependent on the mobility of the carriers. To achieve higher conductivity, the mobility in these systems needs to be increased. The mobility, in turn, depends on the morphology of the polymer. The intrachain mobility depends on the degree of conjugation along the chain, presence of defects, and on the chain conformation. The interchain mobility depends on the interchain interactions, the interchain distance, the degree of crystallinity, etc. Increasing the crystallinity results in increased conductivity as exemplified by polyacetylene. To date, it has proven quite difficult to attain polyaniline in a highly crystalline state. Some crystallinity has been achieved by stretch orientation or mechanical deformation (A. G. MacDiarmid et al in Synth. Met. 55-57, 753). In these stretch-oriented systems, conductivity enhancements have been observed. The conductivity enhancement was generally that measured parallel to the stretch direction. Therefore, the conductivity in these systems is anisotropic. It is desirable to achieve a method of controlling and tuning the morphology of polyaniline. It is desirable to achieve a method of controlling and tuning the degree of crystallinity and the degree of amorphous regions in polyaniline, which in turn provides a method of tuning the physical, mechanical, and electrical properties of polyaniline. It is further desirable to achieve highly crystalline and crystalline polyaniline and to achieve this in a simple and useful manner in order to increase the mobility of the carriers and, therefore, the conductivity of the polymer. It is also further desirable to achieve isotropic conductivity, that is Conductivity not dependent cm direction as with stretch-oriented polyanilines.
OBJECTS
It is an object of the present invention to provide an electrically conducting polymer precursor and electrically conducting polymer having an adjustable morphology.
It is an object of the present invention to provide an electrically conductive polymer precursor and electrically conducting polymer in which the degree of amorphous and crystalline regions is adjustable.
It is an object of the present invention to provide an electrically conducting polymer precursor and electrically conducting polymer having adjustable physical, mechanical and electrical properties.
It is an object of the present invention to provide a crystalline electrically conducting polymer precursor and crystalline conducting polymers.
It is an object of the present invention to provide a highly crystalline electrically conducting polymer precursor and highly crystalline conducting polymers.
It is another object of the present invention to provide an electrically conducting polymer that exhibits enhanced carrier mobility.
It is another object of the present invention to provide an electrically conducting polymer which exhibits enhanced conductivity.
It is another object of the present invention to provide an electrically conducting polymer which exhibits enhanced isotropic conductivity.
It is another object of the present invention to provide a plasticization effect in electrically conducting polymer precursors and electrically conducting polymers.
It is another object of the present invention to provide an antiplasticization effect in electrically conducting polymer precursors and electrically conducting polymers.
It is another object of the present invention to provide a precursor or electrically conducting polymer containing an additive providing mobility.
It is another object of the present invention to provide a precursor or electrically conductive polymer containing an additive to induce an enhanced degree of crystallinity.
It is another object of the present invention to provide a non-strench oriented film of a precursor or of an electrically conductive polymer which has an enhanced degree of crystallinity.
It is an object of the present invention to provide an electrically conducting polymer precursor and electrically conducting polymer having an increased glass transition temperature.
It is an object of the present invention to provide an electrically conducting polymer precursor and electrically conducting polymer having all decreased glass transition temperature.
It is an object of the present invention to provide an electrically conducting polymer precursor and electrically conducting polymer having enhanced mechanical pro
Angelopoulos Marie
Liao Yun-Hsin
Saraf Ravi F.
Beck Thomas A.
International Business Machines - Corporation
Kopec Mark
Morris Daniel P.
LandOfFree
Plasticized, antiplasticized and crystalline conducting... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Plasticized, antiplasticized and crystalline conducting..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plasticized, antiplasticized and crystalline conducting... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3102310