Plastic material made from a polymer blend

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S029000, C524S039000, C524S047000, C524S038000

Reexamination Certificate

active

06509397

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention concerns a plastic material made from a polymer blend and its use.
The use of blends which consist of different polymers and are generally produced through mixing of a corresponding polymer molten mass is very important in plastic processing. The combination of different polymers permits, in particular, combination of the properties of the two polymer components favorable for the intended use of the plastic or to emphasize the desired material properties of one polymer component while compensating for the undesired material properties of the other component to a certain extent, in dependence on the mixing ratio. It is possible to provide plastic materials whose properties can be adjusted to the appropriate technical use.
Plastic materials which consist of synthetic polymers are frequently used to produce ephemeral commercial goods. Recycling is very expensive, in particular because separation of the different plastic materials is difficult. This fact and the necessity to save the limited mineral oil resources from which the basic materials of the plastic synthesis are gained, leads to the wish of replacing synthetic polymers with natural polymers. This aim is made even more attractive by the fact that burning of synthetic plastic materials, which is often the only possibility of waste disposal, produces considerable amounts of CO
2
, often accompanied by toxic emissions. In contrast thereto, polymers of growing natural raw materials have an ecologically neutral CO
2
balance since burning of natural polymers does not release more CO
2
into the atmosphere than is withdrawn during growth of the raw materials. Moreover, in particular biologically degradable or compostable natural polymers are of primary interest because they can be degraded generally without residues and in a considerably shorter time than most synthetic polymers.
There are a plurality of known plastic materials based on natural polymers or natural polymers modified through oxidation, enzyme treatment or the like, such as duroplasts made from casein or thermoplasts made from cellulose nitrates, acetates, esters, and ethers. A disadvantage of many known natural plastic materials is their hygroscopic capacity which is further increased by added softeners. In addition, production thereof requires high temperatures of approximately 200° C. thereby requiring a relatively large amount of energy. Moreover, such plastic materials are often odorous and have worse material properties than synthetic materials.
Lignin is a natural polymer with considerably improved material properties compared to other natural polymers, and is characterized by a relatively high strength, rigidity, impact strength and high resistance with respect to ultra-violet light. Lignin is also a suitable material for heat and sound insulation. Lignin is a high molecular polyphenolic macromolecule which fills the spaces between the cell membranes of ligneous plants and turns them into wood thereby producing a mixed body of pressure-resistant lignin and cellulose having good tensile strength. Depending on the type of wood, the phenyl groups of the lignin can be substituted by up to two methoxy groups and the propyl groups by up to two hydroxyl groups.
Large quantities of lignin are produced as a by-product in cellulose production and are therefore available in large amounts. Disintegration of wood produces lignosulphonic acids as part of the sulfite waste liquor in which the lignosulphonic acids are dissolved in the form of phenolates (“alkali lignin”). The lignin acid can be precipitated through treatment with sulfuric acid and carbon dioxide.
In particular, alkali lignin from the cellulose industry is already used as a binding agent for hardboard made from wood and cellulose, as a dispersing agent, and as a stabilizer in asphalt emulsions.
DE 197 00 902 A1, DE 197 00 903 A1, DE 197 00 905 A1, DE 197 00 907 A1 and DE 197 01 015 A1 disclose an intermediate product for the production of polymerisates from lignin derivatives which are produced in the cellulose industry, wherein lignin derivatives are reacted with phenol oxidizing enzymes in the presence of oxidizing agents such as oxygen. This intermediate product is used as a coating agent for the production of water-proof papers and cartons, as a coating agent or binding agent for the production of particle board, as a binding agent for starch for the production of water-proof starch derivatives, as an insulating material, and as a component of a composite material enriched with plant fibers.
EP 0 720 634 B1 discloses a natural granulated material which is produced from alkali lignin and proteins or protein derivatives, which can be decayed and composted, and which is produced through stereochemical modification through treatment with organic acids, in particular acetic acid. This material can be thermoplastically processed into structural parts.
WO 98/06785 describes a similar composition, wherein lignin and a protein are heated and melted. This material is not suitable for most purposes since proteins are odorous and frequently hygroscopic, even when processed.
It is the underlying purpose of the invention to present a new polymer blend material which is characterized by excellent material properties and which has a favorable CO
2
balance.
This object is achieved in accordance with the invention with a plastic material made from a polymer blend which comprises at least one natural polymer on the basis of lignin and at least one synthetic and/or natural polymer to increase impact strength, with the exception of proteins.
Due to its wide availability, powdery alkali lignin, as extracted from the treatment of cellulose processing waste water through evaporation, or dissolved in alcohol, such as glycol, is preferably used for producing the polymer blend. Exclusion of proteins renders the inventive plastic material long-lasting and largely non-odorous.
Almost all known synthetic thermoplastic materials can be used as synthetic polymer components for increasing the impact strength, e.g. polyethylenes, polypropylenes etc. or thermoplastic elastomers (thermoelastics), e.g. polystyrene, polybutadiene, isoprene etc. The synthetic polymers may also contain additional substances such as softeners (phthalates, adipates, alkyl phosphates or the like) which permits use of even hard synthetic polymers, such as PVC.
Possible natural polymers which increase the impact strength are preferably polylactide, polyhydroxyl butyrate and/or—valerate, cellulose acetate and/or acetopropionate or starch, in particular having a high amylose content.
The inventive blend can be produced in a conventional manner in a molten state, wherein temperatures above 200° C. must be avoided to prevent damage, in particular, to the natural polymers. The selection of the polymers increasing the impact strength is limited only by this upper temperature boundary. Production can be carried out e.g. using extruders, wherein the polymer components can be added separately from separate metering systems or a synthetic and/or natural polymer or a polymer blend is introduced and lignin is added. The inventive plastic material has material properties which distinguish it from many purely synthetic plastic materials and plastic mixtures, as well as from known plastic materials containing natural polymers. In particular, the plastic material has high UV resistance, high strength, high rigidity and high impact strength. While the increased strength, increased impact strength and improved processing capability compared to pure lignin, is caused by the respective synthetic and/or natural polymer component, it is the lignin portion which gives the material its high rigidity, its heat and sound insulating properties and its high UV resistance which renders addition of anti-oxidizing agents largely unnecessary. The lignin portion gives the material a wood-like character which is desired for many applications.
SUMMARY OF THE INVENTION
In a preferred embodiment, the lignin portion of the inventive plastic material is betw

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Plastic material made from a polymer blend does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Plastic material made from a polymer blend, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plastic material made from a polymer blend will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3011797

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.